Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
+ Điều kiện để hai hệ vân trùng nhau
k 1 k 2 = λ 2 λ 1 → λ 2 = k 1 k 2 λ 1 với k 1 , k 2 là các số tối giản
+ Từ vân sáng bậc 1 đến vân sáng bậc 17 của bức xạ λ 1 có 3 vân trùng nhau của hai hệ → vân trùng gần vân trung tâm nhất ứng với k 1 = 5 (hai vân còn lại ứng với k 1 = 10 và k 1 = 15).
+ Với k 1 = 5 → k 2 = k 1 k 2 λ 1 = 5 . 0 , 528 k 2 = 2 , 64 k 2
→ Với khoảng giá trị của ánh sáng nhìn thấy 0,38 μm ≤ λ 2 ≤ 0,78 μm ta thu được hai trường hợp.
+ k 2 = 6 λ 2 = 0 , 44 μ m , tuy nhiên với giá trị này của bước sóng λ 2 thì trong khoảng từ vân sáng thứ nhất đến vân sáng thứ 17 của bức xạ λ 1 ta lại thu được nhiều hơn 32 vân sáng
+ Vậy với k 2 = 4 λ 2 = 0 , 66 μ m
Đáp án B
+ Khi sử dụng ánh sáng đơn sắc λ 1 và λ 2 , ta thấy giữa hai vân sáng gần nhau nhất cùng màu với vân trung tâm có 6 vân sáng ứng với λ 2 → Nếu ta xét vân đầu tiên trùng giữa hai hệ vân vân trung tâm thì vân thứ hai trùng nhau của hai hệ vân của bức xạ λ 2 ứng với k = 7.
→ Áp dụng điều kiện cho vân sáng trùng nhau của λ 1 và λ 2 → k 1 λ 1 = 7 λ 2 → λ 2 = k 1 . 0 , 56 7 = 0 , 08 k 1 .
+ Dựa vào khoảng giá trị của λ 2 là 0,65 μm < λ 2 < 0,75 μm → λ 2 = 0,72 μm.
+ Khi sử dụng ánh áng thì nghiệm gồm ba bức xạ đơn sắc, trong đó λ 3 = 2 3 λ 2 = 0 , 48 μm.
→ Áp dụng điều kiện trùng nhau của ba hệ vân k 1 λ 1 = k 2 λ 2 = k 3 λ 3 ↔ 7 k 1 = 9 λ 2 = 6 k 3
→ Tại vị trí trùng nhau của ba hệ vân sáng gần vân trung tâm nhất thì
+ Điều kiện trùng nhau của vân sáng của hai bức xạ λ 1 và λ 2 là
→ Giữa vân trung tâm và vân trùng màu gần vân trung tâm nhất có 1 vị trí trùng giữa vân sáng của λ 1 và λ 2 .
+ Điều kiện trùng nhau của vân sáng của hai bức xạ λ 3 và λ 2 là
k 3 = 3, 6, 9, 12, 15, 18, 21
k 2 = 2, 4, 6, 8, 10, 12, 14
→ Giữa vân trung tâm và vân trùng màu gần vân trung tâm nhất có 6 vị trí trùng giữa vân sáng của λ 3 và λ 2 .
→ Giữa vân trung tâm và gân trùng màu gần nhất với vân trung tâm có 6 vân sáng đỏ
Bạn tham khảo một bài hoàn toàn tương tự ở đây để tìm ra lời giải cho bài toán này nhé
Hỏi đáp - Trao đổi kiến thức Toán - Vật Lý - Hóa Học - Sinh Học - Học và thi online với HOC24
\(N = N_1+N_2+N_2-(N_{12}+N_{13}+N_{23}) -N_{123}\)
Tìm \(N_1,N_2,N_3\)lần lượt là số vân sáng của các bức xạ 1,2,3 trong đoạn x
Số vân sáng của bức xạ 1 trong đoạn x thỏa mãn: \(x_{s2}^{16} \leq x_{1} \leq x_{s2}^{20}\)
=> \(16i_2 \leq k_1i_1 \leq 20i_2\)
=> \(16\frac{\lambda_2}{\lambda_1} \leq k_1 \leq 20\frac{\lambda_2}{\lambda_1}\) (do \(16\lambda_1 = 20\lambda_2 => \frac{\lambda_2}{\lambda_1} = \frac{4}{5}\))
=> \(12,8 \leq k_1 \leq 16 => k_1 = 13,..16.\). Có 4 vân sáng của bức xạ 1.
Làm tương tự: \(16i_2 \leq k_3i_3 \leq 20i_2\) => \(20 \leq k_1 \leq 25 => k_1 = 20,..25.\) Có 6 vân sáng của bức xạ 3.
Trong đoạn x có chứa 5 vân sáng bức xạ 2 vì ((\(k_2 = 16,..20\))
Tìm số vân sáng trùng nhau của bức xạ 1 và bức xạ 2.
\(x_{s2} = x_{s1} => \frac{\lambda_2}{\lambda_1} = \frac{k_1}{k_2} = \frac{4}{5}.\)
Ta có bảng sau:
Như vậy có 1 vân sáng trùng nhau của bức xạ 1 và 2. (\((k_1 ,k_2) = (16,20) \)
Làm tương tự có 1 vân sáng trùng nhau của bức xạ 2 và 3 là \((k_2 ,k_3) = (20,25) \)
1 vân sáng trùng nhau của bức xạ 1 và 3 là \((k_1 ,k_3) = (16,25) \)
Dựa vào các cặp trùng nhau thấy có 1 vị trí trùng nhau của cả 3 bức xạ là \((k_1,k_2 ,k_3) = (16,20,25) \)
Tóm lại, số vân sáng quan sát được trong đoạn x là
\(N = 4+5+6 -(1+1+1)-1 = 11.\)
Chọn đáp án C.11