Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ (1); (2); (3) ta được tỷ lệ trên
Số vân sáng đơn sắc cần tìm là
=16
Đáp án C
Ba vân trùng nhau nên ta có x1 = x2 = x3
Vậy tại vị trí trùng nhau đầu tiên của 3 bức xạ tính từ vân trung tâm thì đó là vân sáng bậc 15 của λ1, vân sáng bậc 12 của λ2 và vân sáng bậc 10 của λ3.
Xét các vị trí trùng nhau của λ1 và λ2:
Vậy với các giá trị của k1 chia hết cho 5 thì là giá trị của k ứng với vị trí trùng nhau của λ1 và λ2 => có 2 vân trùng.
Xét các vị trí trùng nhau của λ1 và λ3:
Vậy với các giá trị của k1 chia hết cho 3 thì là giá trị của k ứng với vị trí trùng nhau của λ1 và λ3 => có 4 vân trùng.
Xét các vị trí trùng nhau của λ3 và λ2:
Vậy với các giá trị của k2 chia hết cho 6 thì là giá trị của k ứng với vị trí trùng nhau của λ3 và λ2 => có 1 vân trùng.
Vậy số vân sáng quan sát được trong khoảng giữa hai vân trùng nhau của 3 bức xạ là: 14 + 11 + 9 – 2 – 4 – 1 = 27 vân sáng.
Một bài tương tự như vậy bạn nhé
Câu hỏi của Vũ Ngọc Minh - Học và thi online với HOC24
Đáp án B
+ Khi sử dụng ánh sáng đơn sắc λ 1 và λ 2 , ta thấy giữa hai vân sáng gần nhau nhất cùng màu với vân trung tâm có 6 vân sáng ứng với λ 2 → Nếu ta xét vân đầu tiên trùng giữa hai hệ vân vân trung tâm thì vân thứ hai trùng nhau của hai hệ vân của bức xạ λ 2 ứng với k = 7.
→ Áp dụng điều kiện cho vân sáng trùng nhau của λ 1 và λ 2 → k 1 λ 1 = 7 λ 2 → λ 2 = k 1 . 0 , 56 7 = 0 , 08 k 1 .
+ Dựa vào khoảng giá trị của λ 2 là 0,65 μm < λ 2 < 0,75 μm → λ 2 = 0,72 μm.
+ Khi sử dụng ánh áng thì nghiệm gồm ba bức xạ đơn sắc, trong đó λ 3 = 2 3 λ 2 = 0 , 48 μm.
→ Áp dụng điều kiện trùng nhau của ba hệ vân k 1 λ 1 = k 2 λ 2 = k 3 λ 3 ↔ 7 k 1 = 9 λ 2 = 6 k 3
→ Tại vị trí trùng nhau của ba hệ vân sáng gần vân trung tâm nhất thì
+ Điều kiện trùng nhau của vân sáng của hai bức xạ λ 1 và λ 2 là
→ Giữa vân trung tâm và vân trùng màu gần vân trung tâm nhất có 1 vị trí trùng giữa vân sáng của λ 1 và λ 2 .
+ Điều kiện trùng nhau của vân sáng của hai bức xạ λ 3 và λ 2 là
k 3 = 3, 6, 9, 12, 15, 18, 21
k 2 = 2, 4, 6, 8, 10, 12, 14
→ Giữa vân trung tâm và vân trùng màu gần vân trung tâm nhất có 6 vị trí trùng giữa vân sáng của λ 3 và λ 2 .
→ Giữa vân trung tâm và gân trùng màu gần nhất với vân trung tâm có 6 vân sáng đỏ
Đáp án: A
+ Điều kiện vân sáng của λ1 trùng với vân sáng của λ2:
k2/k1 = λ1/λ2 = 0,42/0,56 = a/b = 3/4
+) Điều kiện vân sáng của λ1 trùng với vân sáng của λ3:
k3/k1 = λ1/λ3 = 0,42/0,63 = c/d = 2/3
+) Điều kiện vân sáng của λ2 trùng với vân sáng của λ3:
k3/k2 = λ2/λ3 = 0,56/0,63 = e/f = 8/9
→ Khoảng vân trùng i = b.d.λ1 = a.d.λ2 = b.c.λ3
hay i = 12λ1 = 9λ2 = 8λ3
Trong khoảng giữa hai vân sáng liên tiếp có màu giống màu vân trung tâm, có 2 vị trí vân sáng bức xạ 1 trùng với bức xạ 2, 3 vị trí vân sáng bức xạ 1 trùng với bức xạ 3.
=> Số vân sáng quan sát được là N = (12 – 1)+ (9 – 1) + (8 – 1) – (2 + 3) = 21 vân
(2 vân sáng trùng nhau tính là 1)
Phương pháp: Sử dụng lí thuyết về giao thoa ánh sáng
Cách giải:
Đáp án B
- Vị trí trùng nhau của 3 bức xạ:
Trong khoảng giữa hai vân sáng cùng màu với vân trung tâm có 11 vân sáng của bức xạ 1; 8 vân sáng của bức xạ 2 và 7 vân sáng của bức xạ 3.
- Số vân sáng trùng nhau của λ 1 v à λ 2 :
=> Trong khoảng giữa hai vân sáng liên tiếp có màu giống vân trung tâm có 2 vân trùng nhau của λ1 và λ2 (ứng với n1 = 1; 2)
- Số vân sáng trùng nhau của λ 1 v à λ 3 :
=> Trong khoảng giữa hai vân sáng liên tiếp có màu giống vân trung tâm có 3 vân trùng nhau của λ1 và λ2 (ứng với n2 = 1; 2; 3)
- Số vân sáng trùng nhau của λ 2 v à λ 3 :
=> Trong khoảng giữa hai vân sáng liên tiếp có màu giống vân trung tâm không có vân trùng nhau của λ2 và λ3
- Vân sáng của hai bức xạ trùng nhau ta chỉ tính là 1 => Số vân sáng quan sát được:
N = 11 + 8 + 7 – 5 = 21
Khoảng cách giữa 2 vân gần nhất có màu giống vân trung tâm là \(x_{\equiv}\)
\(\Rightarrow x_{\equiv}=k_1i_1=k_2i_2=k_3i_3\)\(\Rightarrow k_1\lambda_1=k_2\lambda_2=k_3\lambda_3\)(1)
Ta có: \(\frac{k_1}{k_2}=\frac{\lambda_2}{\lambda_1}=\frac{5}{4}\)
Vì trong khoảng giữa hai vân sáng gần nhau nhất cùng màu với vân trung tâm chỉ có một vị trí trùng nhau của các vân sáng ứng với hai bức xạ λ1, λ2 nên: \(\begin{cases}k_1=5.2=10\\k_2=4.2=8\end{cases}\)
Thay vào (1) ta có: \(10\lambda_1=8\lambda_2=k_3\lambda_3\)
λ3 có màu đỏ nên λ1 > λ2
\(\Rightarrow k_3
Ý này của bạn bị nhầm λ3 có màu đỏ nên λ1 > λ2
Sửa lại là: Vì \(\lambda_3\) có màu đỏ nên \(\lambda_3>\lambda_2\)