K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2023

Gọi x và y lần lượt là số máy điều hoà loại hai chiều và một chiều mà cửa hàng cần nhập. \(x, y \in \mathbb N\)

Do nhu cầu thị trường không quá 100 máy cả 2 loại nên \(x + y \le 100\)

Do chủ cửa hàng có thể đầu tư không vượt quá 1,2 tỉ đồng nên: \(20x + 10y \le 1200\)

Tổng số tiền lãi là T = 3,5x+2y (triệu đồng).

 

Các cặp (x;y) thỏa mãn thuộc miền tứ giác OABC, với A(0; 100), B(20; 80), C(60;0).

+) x = 0, y = 100 thì tiền lãi là 3,5.0+2.100=200 triệu đồng

+) x = 60, y = 0 thì tiền lãi là 3,5.60+2.0=210 triệu đồng

+) x = 20, y = 80 thì tiền lãi là 3,5.20+2.80=230 triệu đồng

Vậy cửa hàng cần nhập 20 máy điều hoà loại hai chiều và 80 máy một chiều thì lợi nhuận thu được là lớn nhất.

Một cửa hàng có kế hoạch nhập về hai loại máy tính A và B, giá mỗi chiếc lần lượt là 10 triệu đồng và 20 triệu đồng với số vốn ban đầu không vượt quá 4 tỉ đồng. Loại máy A mang lại lợi nhuận 2,5 triệu đồng cho mỗi máy bán được và loại máy B mang lại lợi nhuận là 4 triệu đồng mỗi máy. Cửa hàng ước tính rằng tổng nhu cầu hàng tháng sẽ không vượt quá 250 máy. Giả sử trong một tháng cửa hàng...
Đọc tiếp

Một cửa hàng có kế hoạch nhập về hai loại máy tính A và B, giá mỗi chiếc lần lượt là 10 triệu đồng và 20 triệu đồng với số vốn ban đầu không vượt quá 4 tỉ đồng. Loại máy A mang lại lợi nhuận 2,5 triệu đồng cho mỗi máy bán được và loại máy B mang lại lợi nhuận là 4 triệu đồng mỗi máy. Cửa hàng ước tính rằng tổng nhu cầu hàng tháng sẽ không vượt quá 250 máy. Giả sử trong một tháng cửa hàng cần nhập số máy tính loại A là x và số máy tính loại B là y.

a) Viết các bất phương trình biểu thị các điều kiện của bài toán thành một hệ bất phương trình rồi xác định miền nghiệm của hệ đó.

b) Gọi F (triệu đồng) là lợi nhuận mà cửa hàng thu được trong tháng đó khi bán x máy tính loại A và y máy tính loại B. Hãy biểu diễn F theo x và y.

c) Tìm số lượng máy tính mỗi loại cửa hàng cần nhập về trong tháng đó đề lợi nhuận thu được là lớn nhất.

2
24 tháng 9 2023

Tham khảo:

 

a)

Bước 1: Ta có:

 

Loại A

Loại B

Giá mua vào

10 triệu đồng/1 máy

20 triệu đồng/1 máy

Lợi nhuận

2,5 triệu đồng/1 máy

4 triệu đồng/1 máy

Bước 2: Lập hệ bất phương trình

Vì số lượng máy là số tự nhiên nên ta có \(x \ge 0;y \ge 0\)

Vốn nhập vào x máy loại A và y máy loại B là \(10x + 20y\)(triệu đồng)

4 tỉ đồng=4000 (triệu đồng)

Vì số vốn ban đầu không vượt quá 4 tỉ đồng nên ta có bất phương trình

\(10x + 20y \le 4000\) \( \Leftrightarrow x + 2y \le 400\)

Vì tổng nhu cầu hàng tháng sẽ không vượt quá 250 máy nên ta có \(x + y \le 250\).

Vậy ta có hệ bất phương trình \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\x + 2y \le 400\\x + y \le 250\end{array} \right.\)

Bước 3: Xác định miền nghiệm

Miền nghiệm là tứ giác OABC với tọa độ các đỉnh này là O(0;0), A(250;0), B(100;150), C(0;200)

b) Lợi nhuận hàng tháng là F(x;y)=2,5x+4y(triệu đồng)

c) Ta cần tìm giá trị lớn nhất của F(x;y) khi (x;y) thỏa mãn hệ bất phương trình \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\x + 2y \le 400\\x + y \le 250\end{array} \right.\)

Ta có F(0;0)=0, F(250;0)=2,5.250+4.0=625

F(100;150)=2,5.100+4.150=850

F(0;200)=2,5.0+4.200=800

Giá trị lớn nhất là F(100;150)=850.

Vậy cửa hàng cần đầu tư kinh doanh 100 máy A và 150 máy B.

24 tháng 9 2023

a) Số máy tính loại A cửa hàng cần nhập trong một tháng là x (máy), số máy tính loại B cửa hàng cần nhập trong một tháng là y (máy) (x,y≥0).

Do tổng nhu cầu hàng tháng sẽ không vượt quá 250 máy: x + y ≤ 250

Tổng số vốn cửa hàng cần nhập hai loại A và B: 10x + 20y (triệu đồng)

Vì mỗi chiếc máy tính loại A có giá 10 triệu và mỗi máy tính loại B có giá 20 triệu nên tổng số vốn cửa hàng cần nhập hai loại A và B: 10x + 20y (triệu đồng)

Vì số vốn ban đầu không vượt quá 4 tỉ đồng nên ta có: 10x + 20y ≤ 4 000 hay x + 2y ≤ 400.

Ta có hệ bất phương trình: \(\left\{{}\begin{matrix}x\ge0\\y\ge0\\x+y\le250\\x+2y\le400\end{matrix}\right.\)

Ta xác định miền nghiệm của hệ bất phương trình trên:

+) Miền nghiệm D1 của bất phương trình x ≥ 0 là nửa mặt phẳng bờ Oy chứa điểm (1;0).

+) Miền nghiệm D2 của bất phương trình y ≥ 0 là nửa mặt phẳng bờ Ox chứa điểm (0;1).

+) Xác định miền nghiệm D3 của bất phương trình x + y ≤ 250.

- Vẽ đường thẳng d: x + y = 250.

- Vì 0 + 0 = 0 < 250 nên tọa độ điểm O(0;0) thỏa mãn bất phương trình x + y ≤ 250

Do đó miền nghiệm D3 của bất phương trình x + y ≤ 250 là nửa mặt phẳng bờ d chứa gốc tọa độ.

+) Xác định miền nghiệm D4 của bất phương trình x + 2y ≤ 400.

- Vẽ đường thẳng d’: x + 2y  = 400.

- Vì 0 + 2.0 = 0 < 400 nên tọa độ điểm O(0;0) thỏa mãn bất phương trình x + 2y < 400

Do đó miền nghiệm D4 của bất phương trình x + 2y < 400 là nửa mặt phẳng bờ d’ chứa gốc tọa độ.

Miền nghiệm của hệ bất phương trình trên là tứ giác OABC với O(0;0), A(0; 200), C(100;150), B(250;0)

Một cửa hàng có kế hoạch nhập về hai loại máy tính A và B, giá mỗi chiếc lần lượt (ảnh 1)

b) Lợi nhuận mà cửa hàng thu được trong tháng đó khi bán x máy tính loại A và y máy tính loại B là: F(x;y) = 2,5x + 4y (triệu đồng).

Vậy F(x;y) = 2,5x + 4y.

c) Bài toán chuyển về tìm giá trị lớn nhất của F(x;y) với (x;y) thuộc miền nghiệm của hệ bất phương trình \(\left\{{}\begin{matrix}x\ge0\\y\ge0\\x+y\le250\\x+2y\le400\end{matrix}\right.\)

Người ta đã chứng minh được, giá trị F(x; y) lớn nhất tại (x; y) là tọa độ của một trong bốn đỉnh O; A; B; C.

Tại O(0; 0), ta có: F(0; 0) = 2,5 . 0 + 4 . 0 = 0;

Tại A(0; 200), ta có: F(0; 200) = 2,5 . 0 + 4 . 200 = 800;

Tại B(100; 150), ta có: F(100; 150) = 2,5 . 100 + 4 . 150 = 850;

Tại B(250; 0), ta có: F(250; 0) = 2,5 . 250 + 4 . 0 = 625.

Do đó F(x;y) lớn nhất bằng 850 tại x = 100 và y = 150.

Vậy cửa hàng cần nhập 100 máy loại A, 150 máy loại B để cửa hàng thu được lợi nhuận lớn nhất là 850 triệu đồng.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Số tiền mua x chiếc điều hòa hai chiều là 20x (triệu đồng)

Số tiền mua y chiếc điều hòa một chiều là 10y (triệu đồng).

Số tiền khi mua x chiếc điều hòa hai chiều và y chiếc điều hòa một chiều là 20x+10y (triệu đồng).

a) Nhu cầu thị trường không quá 100 máy cả 2 loại có nghĩa là tổng số điều hòa nhập vào cũng không quá 100 máy: \(x + y \le 100\)

b)

1,2 tỉ đồng =1200 (triệu đồng)

Số vốn mua x điều hòa hai chiều và y chiếc điều hòa một chiều là 20x+10y (triệu đồng).

Do chủ cửa hàng có thể đầu tư không vượt quá 1,2 tỉ đồng nên ta có: \(20x + 10y \le 1200\)

\( \Leftrightarrow 2x + y \le 120\)

c)

Số tiền lãi khi bán x chiếc điều hòa hai chiều là 3,5x (triệu đồng)

Số tiền lãi khi bán y chiếc điều hòa một chiều là 2y (triệu đồng)

Tổng số tiền lãi là 3,5x+2y (triệu đồng)

Một doanh nghiệp tư nhân A chuyên kinh doanh xe gắn máy các loại. Hiện nay doanh nghiệp đang tập trung chiến lược vào kinh doanh xe hon đa Future Fi với chi phí mua vào một chiếc là 27 (triệu đồng) và bán ra với giá là 31 triệu đồng. Với giá bán này thì số lượng xe mà khách hàng sẽ mua trong một năm là 600 chiếc. Nhằm mục tiêu đẩy mạnh hơn nữa lượng tiêu thụ dòng xe đang ăn khách này, doanh...
Đọc tiếp

Một doanh nghiệp tư nhân A chuyên kinh doanh xe gắn máy các loại. Hiện nay doanh nghiệp đang tập trung chiến lược vào kinh doanh xe hon đa Future Fi với chi phí mua vào một chiếc là 27 (triệu đồng) và bán ra với giá là 31 triệu đồng. Với giá bán này thì số lượng xe mà khách hàng sẽ mua trong một năm là 600 chiếc. Nhằm mục tiêu đẩy mạnh hơn nữa lượng tiêu thụ dòng xe đang ăn khách này, doanh nghiệp dự định giảm giá bán và ước tính rằng nếu giảm 1 triệu đồng mỗi chiếc xe thì số lượng xe bán ra trong một năm là sẽ tăng thêm 200 chiếc. Vậy doanh nghiệp phải định giá bán mới là bao nhiêu để sau khi đã thực hiện giảm giá, lợi nhuận thu được sẽ là cao nhất.

A. 30 triệu đồng.

B. 29 triệu đồng.

C. 30,5 triệu đồng.

D. 29,5 triệu đồng

1
5 tháng 5 2017

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

- Lập hệ:

Do số lượng máy nhập vào phải là số tự nhiên nên ta có \(x \ge 0,y \ge 0\).

Từ HĐ 1 ta có hai bất phương trình là \(x + y \le 100\) và \(2x + y \le 120\)

Vậy hệ bất phương trình từ HĐ 1 là

\(\left\{ \begin{array}{l}x + y \le 100\\2x + y \le 120\\x \ge 0\\y \ge 0\end{array} \right.\).

Cặp số (x;y)=(50;10) là một nghiệm của hệ BPT vì thay x= 50, y= 10 ta được:  

\(\left\{ {\begin{array}{*{20}{l}}
{50 + 10 \le 100}\, \text {(Đúng)}\\
{2.50 + 10 \le 120}\, \text {(Đúng)}\\
{50 \ge 0}\, \text {(Đúng)}\\
{10 \ge 0}\, \text {(Đúng)}
\end{array}} \right.\)

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

Để cửa hàng có lãi thì lợi nhuận lớn hơn 0, suy ra \(I > 0 \Leftrightarrow  - 3{x^2} + 200x - 2325 > 0\)

Tam thức \(I =  - 3{x^2} + 200x - 2325\) có \(\Delta  = 12100 > 0\), có hai nghiệm phân biệt \({x_1} = 15;{x_2} = \frac{{155}}{3}\) và có \(a =  - 3 < 0\)

Ta có bảng xét dấu như sau:

 

Vậy ta thấy cửa hàng có lợi nhuận khi \(x \in \left( {15;\frac{{155}}{3}} \right)\) (kg)

17 tháng 1 2023

Ta có :

\(+\) loại 1 : \(\text{1,7kWh}\)

Số kWh tiêu thụ trong 10 năm của loại 1 là : \(\text{1,7.10 = 17 kWh}\)

1kWh giá 2 500đ \(\Rightarrow\) 17kWh giá 42 500đ

Số tiền chi phí sử dụng tủ lạnh loại 1 kể cả giá tiền tủ lạnh là : \(42500+2500000=2542500\left(đ\right)\)

\(+\) loại 2 : \(\text{1,5kWh}\)

Số kWh tiêu thụ trong 10 năm của loại 2 là : \(\text{1,5.10 = 15 kWh}\)

1kWh giá 2 500đ \(\Rightarrow\) 15kWh giá 37 500đ

Số tiền chi phí sử dụng tủ lạnh loại 2 kể cả giá tiền tủ lạnh là : 

\(3000000+37500=3037500\left(đ\right)\)

\(\Rightarrow\) \(2542500đ\left(loai1\right)< 3037500đ\left(loai2\right)\)

\(\Rightarrow\) Vậy ông A nên mua tủ lạnh loại 1 để tiết kiệm chi phí

Một phân xưởng có hai máy đặc chủng M1, M2 sản xuất hai loại sản phẩm kí hiệu là I và II. Một tấn sản phẩm loại I lãi 6 triệu đồng, một tấn sản phẩm loại II lãi 4,8 triệu đồng. Muốn sản xuất một tấn sản phẩm loại I phải dùng máy M1 trong 3 giờ và máy M2 trong 1 giờ. Muốn sản xuất một tấn sản phẩm loại II phải dùng máy M1 trong 1 giờ và máy M2 trong 1 giờ. Một máy không thể dùng để sản xuất...
Đọc tiếp

Một phân xưởng có hai máy đặc chủng M1, M2 sản xuất hai loại sản phẩm kí hiệu là I và II. Một tấn sản phẩm loại I lãi 6 triệu đồng, một tấn sản phẩm loại II lãi 4,8 triệu đồng. Muốn sản xuất một tấn sản phẩm loại I phải dùng máy M1 trong 3 giờ và máy M2 trong 1 giờ. Muốn sản xuất một tấn sản phẩm loại II phải dùng máy M1 trong 1 giờ và máy M2 trong 1 giờ. Một máy không thể dùng để sản xuất đồng thời hai loại sản phẩm. Máy M1 làm việc không quá 6 giờ trong một ngày, máy M2 chỉ làm việc không quá 4 giờ. Gỉa sử số tấn sản phẩm loại I, II sản xuất trong một ngày lần lượt là x,y

a) viết các bất phương trình biểu thị các điều kiện của bài toán thành một hệ bất phương trình rồi xác định miền nghiệm của hệ đó

b) gọi F( triệu đồng ) là số tiền lãi thu được trong một ngày

c) Cần sản xuất bao nhiêu tấn sản phẩm loại I và loại II trong một ngày để số tiền lãi thu được là cao nhất

0
3 tháng 3 2018

Gọi x, y, z lần lượt là số đồng tiền xu loại 2000 đồng, 1000 dồng, 500 đồng.

    Điều kiện là x, y, z nguyên dương

    Ta có hệ phương trình

    x + y + z = 1450 (1)

    4x + 2y + z = 3000 (2)

    2x + y - 2z = 0 (3)

    Trừ từng vế tương ứng của phương trình (2) với phương trình (1) ta được

    3x + y = 1550

    Cộng từng vế tương ứng của các phương trình (1), (2) và (3) ta có :

    7x + 4y = 4450.

    Giải hệ gồm hai phương trình (4) và (5) ta được.

    x = 350, y = 500.

    Thay các giá trị của x, y vào phương trình (1) ta được z = 600.

    Vậy cửa hàng đổi được 350 đồng tiền xu loại 2000 đồng, 500 đồng tiền loại 1000 đồng và 600 đồng tiền xu loại 500 đồng.

16 tháng 8 2023

Gọi x, y, z lần lượt là số đồng tiền xu loại 2000 đồng, 1000 dồng, 500 đồng.

 

    Điều kiện là x, y, z nguyên dương

 

    Ta có hệ phương trình:

 

    x + y + z = 1450 (1)

 

    4x + 2y + z = 3000 (2)

 

    2x + y - 2z = 0 (3)

 

    Trừ từng vế tương ứng của phương trình (2) với phương trình (1) ta được:

 

    3 x + y = 1550

 

    Cộng từng vế tương ứng của các phương trình (1), (2) và (3) ta có :

 

    7 x + 4 y = 4450.

 

    Giải hệ gồm hai phương trình (4) và (5) ta được:

 

    x = 350, y = 500.

 

    Thay các giá trị của x, y vào phương trình (1) ta được z = 600.

 

    Vậy cửa hàng đổi được 350 đồng tiền xu loại 2000 đồng, 500 đồng tiền loại 1000 đồng và 600 đồng tiền xu loại 500 đồng.