Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
14.
\(\overrightarrow{AB}=\left(-3;10\right)\Rightarrow\) đường thẳng AB nhận \(\left(10;3\right)\) là 1 vtpt
Phương trình AB:
\(10\left(x-3\right)+3\left(y+4\right)=0\Leftrightarrow10x+3y-18=0\)
16.
Do d song song denta nên d nhận \(\left(3;-2\right)\) là 1 vtpt
Phương trình d:
\(3\left(x-2\right)-2\left(y-1\right)=0\Leftrightarrow3x-2y-4=0\)
17. Cho d vuông góc denta nên d nhận \(\left(1;-1\right)\) là 1vtpt
Phương trình d:
\(1\left(x-4\right)-1\left(y+1\right)=0\Leftrightarrow x-y-5=0\)
14.
\(\overrightarrow{AB}=\left(-3;10\right)\) nên pt tham số của AB là: \(\left\{{}\begin{matrix}x=3-3t\\y=-4+10t\end{matrix}\right.\)
15.
Do d song song delta nên d nhận \(\left(2;-1\right)\) là 1 vtcp
Phương trình tham số d: \(\left\{{}\begin{matrix}x=2t\\y=-4-t\end{matrix}\right.\)
18.
d có vtcp là (2;3) nên d nhận (3;-2) là 1 vtpt
Phương trình d:
\(3\left(x+1\right)-2\left(y-0\right)=0\Leftrightarrow3x-2y+3=0\)
19.
\(\overrightarrow{AB}=\left(3;-4\right)\Rightarrow\) đường thẳng AB nhận (4;3) là 1 vtpt
Phương trình d:
\(4\left(x+2\right)+3\left(y-4\right)=0\Leftrightarrow4x+3y-4=0\)
Tâm I thuộc đường thẳng d nên thỏa mãn \(x+3y+8=0\)
Có 2 cách gọi: 1 là đặt ẩn x là a thì: \(a+3y+8=0\Rightarrow y=\frac{-a-8}{3}\)
\(\Rightarrow I\left(a;\frac{-a-8}{3}\right)\)
2 là đặt ẩn y là a thì: \(x+3a+8=0\Rightarrow x=-3a-8\Rightarrow I\left(-3a-8;a\right)\)
Cách sau ko có mẫu số dễ tính toán hơn
Gọi tâm \(I\left(-3a-8;a\right)\Rightarrow\overrightarrow{IA}=\left(3a+6;1-a\right)\)
\(d\left(I;d'\right)=\frac{\left|3\left(-3a-8\right)-4a+10\right|}{\sqrt{3^2+\left(-4\right)^2}}=\frac{\left|13a+14\right|}{5}\)
(C) qua A và tiếp xúc d' \(\Leftrightarrow IA=d\left(I;d'\right)\)
\(\Leftrightarrow\left(3a+6\right)^2+\left(1-a\right)^2=\frac{\left(13a+14\right)^2}{25}\)
\(\Leftrightarrow a^2+6a+9=0\Rightarrow a=-3\)
\(\Rightarrow I\left(1;-3\right)\Rightarrow R=IA=5\)
Pt đường tròn: \(\left(x-1\right)^2+\left(y+3\right)^2=25\)
Câu 32:
Gọi M là giao điểm d1;d2 thì tọa độ M là nghiệm của hệ:
\(\left\{{}\begin{matrix}3x-5y+2=0\\5x-2y+4=0\end{matrix}\right.\) \(\Rightarrow M\left(-\frac{16}{19};-\frac{2}{19}\right)\)
Do d song song d3 nên d nhận \(\left(2;-1\right)\) là 1 vtpt
Phương trình d:
\(2\left(x+\frac{16}{19}\right)-1\left(y+\frac{2}{19}\right)=0\Leftrightarrow2x-y+\frac{30}{19}=0\)
Câu 33:
\(\overrightarrow{BC}=\left(1;-2\right)\)
Do AH vuông góc BC nên AH nhận \(\left(1;-2\right)\) là 1 vtpt
Phương trình AH:
\(1\left(x+1\right)-2\left(y-2\right)=0\Leftrightarrow x-2y+5=0\)
Câu 34:
Tọa độ M là: \(M\left(\frac{3}{2};4\right)\)
\(\overrightarrow{CM}=\left(-\frac{3}{2};6\right)=-\frac{3}{2}\left(1;-4\right)\)
Phương trình tham số CM: \(\left\{{}\begin{matrix}x=3+t\\y=-2-4t\end{matrix}\right.\)
Câu 30:
\(\overrightarrow{AB}=\left(-2;0\right)=-2\left(1;0\right)\) nên đường thẳng AB nhận \(\left(1;0\right)\) là 1 vtcp
Phương trình AB: \(\left\{{}\begin{matrix}x=1+t\\y=-7\end{matrix}\right.\)
Cả 4 đáp án đều ko chính xác
Câu 31:
Gọi M là trung điểm AB \(\Rightarrow M\left(-1;1\right)\)
\(\overrightarrow{AB}=\left(-6;-4\right)=-2\left(3;2\right)\Rightarrow\) đường trung trực AB nhận \(\left(3;2\right)\) là 1vtpt
Phương trình:
\(3\left(x+1\right)+2\left(y-1\right)=0\Leftrightarrow3x+2y+1=0\)
CD nhận \(\left(3;-4\right)\) là 1 vtpt
Đường thẳng AD vuông góc CD nên nhận \(\left(4;3\right)\) là 1 vtpt
Phương trình AD:
\(4\left(x+2\right)+3\left(y-1\right)=0\Leftrightarrow4x+3y+5=0\)
Đường tròn tâm \(I\left(3;-2\right)\) bán kính \(R=5\)
Áp dụng định lý Pitago: \(d\left(I;AB\right)=\sqrt{R^2-\left(\frac{AB}{2}\right)^2}=3\)
d' song song d nên pt có dạng: \(3x-4y+c=0\) (với \(c\ne-2\))
\(d\left(I;d'\right)=3\Leftrightarrow\frac{\left|3.3-4.\left(-2\right)+c\right|}{\sqrt{3^2+\left(-4\right)^2}}=3\)
\(\Leftrightarrow\left|c+17\right|=15\Rightarrow\left[{}\begin{matrix}c=-2\left(l\right)\\c=-32\end{matrix}\right.\)
Vậy pt d': \(3x-4y-32=0\)
b/ \(\Delta\) là tiếp tuyến (C) \(\Leftrightarrow d\left(I;\Delta\right)=R\)
\(\Leftrightarrow\frac{\left|3.3+4.\left(-2\right)+m\right|}{\sqrt{3^2+4^2}}=5\Leftrightarrow\left|m+1\right|=25\Rightarrow\left[{}\begin{matrix}m=24\\m=-26\end{matrix}\right.\)
Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}3x+4y+24=0\\3x+4y-26=0\end{matrix}\right.\)
c/ Thay tọa độ đường thẳng vào pt (C) được:
\(\left(3+2t\right)^2+\left(-2-t\right)^2-6\left(3+2t\right)+4\left(-2-t\right)-12=0\)
\(\Leftrightarrow5t^2-25=0\Rightarrow t=\pm\sqrt{5}\)
Tọa độ giao điểm: \(\left\{{}\begin{matrix}A\left(3+2\sqrt{5};-2-\sqrt{5}\right)\\B\left(3-2\sqrt{5};-2+\sqrt{5}\right)\end{matrix}\right.\)
\(\overrightarrow{AB}=\left(3;-4\right)\) , gọi M là trung điểm AB \(\Rightarrow M\left(-\frac{1}{2};1\right)\)
Trung trực AB qua M và vuông góc AB nên có pt:
\(3\left(x+\frac{1}{2}\right)-4\left(y-1\right)=0\Leftrightarrow6x-8y+11=0\)
b/ \(AB=\sqrt{3^2+\left(-4\right)^2}=5\Rightarrow R=AB=5\)
Pt đường tròn: \(\left(x+2\right)^2+\left(y-3\right)^2=25\)
c/ Chắc là viết pttt?
Tiếp tuyến song song denta nên có pt: \(3x+4y+c=0\) (\(c\ne-1\))
d tiếp xúc (C) nên \(d\left(A;d\right)=R\Leftrightarrow\frac{\left|3.\left(-2\right)+4.3+c\right|}{\sqrt{3^2+4^2}}=5\)
\(\Leftrightarrow\left|c+6\right|=25\Rightarrow\left[{}\begin{matrix}c=19\\c=-31\end{matrix}\right.\)
Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}3x+4y+19=0\\3x+4y-21=0\end{matrix}\right.\)