Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
Ta có: f(0) = 0^5 + 2 = 2
g(0) = 5.0^3 - 4.0 + 2 = 2
=> f(0) = g(0)
f(1) = 1^5 + 2 = 1 + 2 = 3
g(1) = 5.1^3 - 4.1 + 2 = 5 - 4 + 2 = 3
=> f(1) = g(1)
f(-1) = (-1)^5 + 2 = -1 + 2 = 1
g(-1) = 5.(-1)^3 - 4.(-1) + 2 = -5 + 4 + 2 = 1
=> f(-1) = g(-1)
f(2) = 2^5 + 2 = 32 + 2 = 34
g(2) = 5.2^3 - 4.2 + 2 = 40 - 8 + 2 = 34
=> f(2) = g(2)
f(-2) = (-2)^5 + 2 = -32 + 2 = -30
g(-2) = 5.(-2)3 - 4. (-2) + 2 = -40 + 8 + 2 = -30
=> f(-2) = g(-2)
ko thể kết luận f(x) = g(x) với mọi x thuộc R
a) \(P\left(x\right)=f\left(x\right)-g\left(x\right)\)
\(P\left(x\right)=\left(2x^3+x^2-3x-4\right)-\left(-x^3+3x^2+5x-1\right)\)
\(P\left(x\right)=2x^3+x^2-3x-4+x^3-3x^2-5x+1\)
\(P\left(x\right)=2x^3+x^3+x^2-3x^2-3x-5x-4+1\)
\(P\left(x\right)=3x^3-2x^2-8x-3\)
b) \(R\left(x\right)=f\left(x\right)-h\left(x\right)\)
\(R\left(x\right)=\left(2x^3+x^2-3x-4\right)-\left(-3x^3+2x^2-x-3\right)\)
\(R\left(x\right)=2x^3+x^2-3x-4+3x^3-2x^2+x+3\)
\(R\left(x\right)=2x^3+3x^3+x^2-2x^2-3x+x-4+3\)
\(R\left(x\right)=5x^3-x^2-2x-1\)
c) Mình chưa học ạ nên không biết làm.
a)P(x)=(2x3+x2-3x-4) - (-x3+3x2+5x-1)
= 2x3+x2-3x-4 - x3-3x2-5x+1
= (2x3-x3)+(x2-3x2) +(-3x-5x)+(-4+1)
= x3-2x2-8x-3
b) R(x)=(2x3+x2-3x-4) - (-3x3+2x2-x-3)
= 2x3+x2-3x-4 - 3x3-2x2+x+3
=(2x3-3x3)+(x2-2x2)+(-3x+x)+(-4+3)
= -x3-x2-2x-1
Bài 1
Gợi ý bạn làm : Bạn thay \(x=-4;x=-3;x=0;x=1\) vào \(f\left(x\right);g\left(x\right)\)
\(\Rightarrow\) Nếu kết quả ra giống nhau thì là nghiệm , ra khác nhau thì không là nghiệm
VD : Thay \(x=-4\) vào \(f\left(x\right)\) và \(g\left(x\right)\)
\(f\left(-4\right)=4.\left(-4\right)^4-5\left(-4\right)^3+3.\left(-4\right)+2=1334\)
\(g\left(x\right)=-4.\left(-4\right)^4+5\left(-4\right)^3+7=-1337\)
Ra hai kết quả khác nhau
\(\Rightarrow x=-4\) không là nghiệm
Bài 2
\(f\left(x\right)-g\left(x\right)=\left(-x^5+3x^2+4x+8\right)-\left(-x^5-3x^2+4x+2\right)\\ =-x^5+3x^2+4x+8+x^5+3x^2-4x-2\\ =\left(-x^5+x^5\right)+\left(3x^2+3x^2\right)+\left(4x-4x\right)+\left(8-2\right)\\ =6x^2+6\\ =x^2+1\\ =x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\\ =\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
\(\Rightarrow\) phương trình vô nghiệm
a. f(x)+g(x)=2x5−4x4+3x3−x2+5x−1+(−x5+2x4−3x3−x2−2x+7)
=2x5-x5-4x4+2x4+3x3-3x3-x2-x2+5x-2x-1+7
=x5-2x4-2x2+3x+6
b. f(x)+h(x)=2x5−4x4+3x3−x2+5x−1+x5−2x4−2x2−x−3
=2x5+x5-4x4-2x4+3x3-x2-2x2+5x-x-1-3
=3x5-6x4+3x3-3x2+6x-4
c. g(x)+h(x)=−x5+2x4−3x3−x2−2x+7+x5−2x4−2x2−x−3
=-x5+x5+2x4-2x4-3x3-x2-2x2-2x-x+7-3
=-3x3-3x2-3x+4
d. f(x)-g(x)=2x5−4x4+3x3−x2+5x−1-(−x5+2x4−3x3−x2−2x+7)
=2x5−4x4+3x3−x2+5x−1-x5-2x4+3x3+x2+2x-7
=2x5-x5-4x4-2x4+3x3+3x3-x2+x2+5x+2x-1-7
=x5-6x4+6x3+7x-8
e. f(x)-h(x)=2x5−4x4+3x3−x2+5x−1-(x5−2x4−2x2−x−3)
=2x5−4x4+3x3−x2+5x−1-x5+2x4+2x2+x+3
=2x5-x5-4x4+2x4+3x3-x2+2x2+5x+x-1+3
=x5-2x4+3x3+x2+6x-4
h. g(x)-h(x)=−x5+2x4−3x3−x2−2x+7-(x5−2x4−2x2−x−3)
=−x5+2x4−3x3−x2−2x+7-x5+2x4+2x2+x+3
=-x5-x5+2x4+2x4-3x3-x2+2x2-2x+x+7+3
=-2x5+4x4-3x3+x2-x+10
f. f(x)+g(x)+h(x)=2x5−4x4+3x3−x2+5x−1+(−x5+2x4−3x3−x2−2x+7)+x5−2x4−2x2−x−3
=2x5-x5+x5-4x4+2x4-2x4+3x3-3x3-x2-x2-2x2+5x-2x-x-1+7-3
=2x5-4x4-4x2+2x+3
g. f(x)+g(x)-h(x)=2x5−4x4+3x3−x2+5x−1+(−x5+2x4−3x3−x2−2x+7)-(x5−2x4−2x2−x−3)
=2x5−4x4+3x3−x2+5x−1+(−x5+2x4−3x3−x2−2x+7)-x5+2x4+2x2+x+3
=2x5-x5-x5-4x4+2x4+2x4+3x3-3x3-x2-x2+2x2+5x-2x+x-1+7+3
=4x+9
n. f(x)-g(x)+h(x)=2x5−4x4+3x3−x2+5x−1-(−x5+2x4−3x3−x2−2x+7)+x5−2x4−2x2−x−3
=2x5−4x4+3x3−x2+5x−1-x5-2x4+3x3+x2+2x-7+x5−2x4−2x2−x−3
=2x5-x5+x5-4x4-2x4-2x4+3x3+3x3-x2+x2-2x2+5x+2x-x-1-7-3
=2x5-8x4+6x3-2x2+6x-11
m. f(x)-g(x)-h(x)=2x5−4x4+3x3−x2+5x−1-(−x5+2x4−3x3−x2−2x+7)-(x5−2x4−2x2−x−3)
=2x5−4x4+3x3−x2+5x−1-x5-2x4+3x3+x2+2x-7-x5+2x4+2x2+x+3
=2x5-x5-x5-4x4-2x4+2x4+3x3+3x3-x2+x2+2x2+5x+2x+x-1-7+3
=-4x4+6x3+2x2+8x-5
a)
Thương Q(x) = 2x2 – x + 5
Dư R(x) = 2x – 1
Ta có: F(x) = 3x2 . (2x2 – x + 5) + 2x – 1
b)
Thương Q(x) = 4x2 + 2x – 2
Dư R(x) = -x – 1
Ta có: F(x) = (3x2 + x + 1) . (4x2 + 2x – 2) – x – 1