K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2017

b) (d) cắt (P) tại 2 điểm A, B phân biệt nằm về 2 phía của trục tung khi và chỉ khi

Đề kiểm tra Toán 9 | Đề thi Toán 9

Khi đó 2 nghiệm của phương trình là:

Đề kiểm tra Toán 9 | Đề thi Toán 9
Đề kiểm tra Toán 9 | Đề thi Toán 9

Kẻ BB' ⊥ OM ; AA' ⊥ OM

Đề kiểm tra Toán 9 | Đề thi Toán 9

Ta có:

S A O M  = 1/2 AA'.OM ; S B O M  = 1/2 BB'.OM

Theo bài ra:

Đề kiểm tra Toán 9 | Đề thi Toán 9

Do m > 0 nên m = 8

Vậy với m = 8 thì thỏa mãn điều kiện đề bài.

b) Phương trình hoành độ giao điểm của (P) và (d) là:

\(x^2=2\left(m-1\right)x+5-2m\)

\(\Leftrightarrow x^2-2\left(m-1\right)x-5+2m=0\)

Áp dụng hệ thức Vi-et, ta được:

\(x_1+x_2=2\left(m-1\right)\)

Ta có: \(x_1+x_2=6\)

\(\Leftrightarrow2\left(m-1\right)=6\)

\(\Leftrightarrow m-1=3\)

hay m=4

Vậy: m=4

a: y=mx+3

Thay x=1 và y=0 vào (d), ta được:

m+3=0

=>m=-3

b: PTHĐGĐ là:

x^2-mx-3=0

Vì a*c=-3<0

nên (P) luôn cắt (d) tại hai điểm phân biệt

|x1-x2|=2

=>\(\sqrt{\left(x_1-x_2\right)^2}=2\)

=>\(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=2\)

=>\(\sqrt{m^2-4\left(-3\right)}=2\)

=>m^2+12=4

=>m^2=-8(loại)

=>KO có m thỏa mãn đề bài

NV
26 tháng 3 2022

Phương trình hoành độ giao điểm:

\(-\dfrac{1}{2}x^2=mx+m-3\Leftrightarrow x^2+2mx+2m-6=0\) (1)

a. Khi \(m=-1\), (1) trở thành:

\(x^2-2x-8=0\Rightarrow\left[{}\begin{matrix}x=4\Rightarrow y=-8\\x=-2\Rightarrow y=-2\end{matrix}\right.\)

Vậy (d) cắt (P) tại 2 điểm có tọa độ là \(\left(4;-8\right)\) ; \(\left(-2;-2\right)\)

b. 

\(\Delta'=m^2-2m+6=\left(m+1\right)^2+5>0;\forall m\Rightarrow\left(1\right)\) có 2 nghiệm pb với mọi m

Hay (d) cắt (P) tại 2 điểm pb với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=2m-6\end{matrix}\right.\)

\(x_1^2+x_2^2=14\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=14\)

\(\Leftrightarrow4m^2-2\left(2m-6\right)=14\)

\(\Leftrightarrow4m^2-4m-2=0\Rightarrow m=\dfrac{1\pm\sqrt{3}}{2}\)

1: Tọa độ A là:

y=0 và 4x+m-3=0

=>x=(-m+3)/4 và y=0

=>OA=|m-3|/4

Tọa độ B là:

x=0 và y=m-3

=>OB=|m-3|

Theo đề, ta có: 1/2*(m-3)^2/4=9

=>(m-3)^2/4=18

=>(m-3)^2=72

=>\(m=\pm6\sqrt{2}+3\)

2:

PTHĐGĐ là:

x^2-4x-m+3=0

Δ=(-4)^2-4*(-m+3)=16+4m-12=4m+4

Để (P) cắt (d) tại hai điểm phân biệt thì 4m+4>0

=>m>-1

(4-x1)(x2-1)=2

=>4x2-4-x1x2+1=2

=>x2(x1+x2)-3-(-m+3)=2

=>x2*4-3+m-3=2

=>x2*4=2-m+6=8-m

=>x2=2-1/2m

=>x1=4-2+1/2m=1/2m+2

x1*x2=-m+3

=>-m+3=(1/2m+2)(2-1/2m)=4-1/4m^2

=>-m+3-4+1/4m^2=0

=>1/4m^2-m-1=0

=>m^2-4m-4=0

=>\(m=2\pm2\sqrt{2}\)

a: Thay x=-1 và y=3 vào (d), ta được:

-2-m+1=3

=>-1-m=3

=>m+1=-3

hay m=-4

 

13 tháng 1 2022

Còn phần b nữa bạn ơi

NV
30 tháng 3 2023

a. Em tự giải

b.

Phương trình hoành độ giao điểm (d) và (P):

\(x^2=\left(m+2\right)x-m+3\Leftrightarrow x^2-\left(m+2\right)x+m-3=0\)

\(\Delta=\left(m+2\right)^2-4\left(m-3\right)=m^2+16>0;\forall m\)

(d) cắt (P) tại 2 điểm phân biệt với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1x_2=m-3\end{matrix}\right.\)

\(x_1^2+x_2^2+x_1x_2\le5\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-x_1x_2\le5\)

\(\Leftrightarrow\left(m+2\right)^2-\left(m-3\right)\le5\)

\(\Leftrightarrow m^2+3m+2\le0\)

\(\Leftrightarrow\left(m+1\right)\left(m+2\right)\le0\)

\(\Rightarrow-2\le m\le-1\)

a: khi m=3 thì (d): y=5x

PTHĐGĐ là:

x^2=5x

=>x=0 hoặc x=5

=>y=0 hoặc y=25

b:

PTHĐGĐ là:

x^2-(m+2)x+m+3=0

Δ=(m+2)^2-4(m+3)

=m^2+4m+4-4m-12=m^2-8

Để (d) cắt (P) tại 2 điểm pb thì m^2-8>0

=>m>2 căn 2 hoặc m<-2 căn 2

x1^2+x2^2+x1x2<=5

=>(x1+x2)^2-x1x2<=5

=>(m+2)^2-m-3<=5

=>m^2+4m+4-m-3-5<=0

=>m^2+3m-4<=0

=>(m+4)(m-1)<=0

=>-4<=m<=1

17 tháng 5 2021

đơn giản vl