Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Lập phương trình hoành độ giao điểm:
x2 = mx + 3
<=> x2 - mx - 3 = 0
Tọa độ (P) và (d) khi m = 2:
<=> x2 - 2x - 3 = 0
<=> \(\orbr{\begin{cases}x_1=3\\x_2=-1\end{cases}}\) => \(\orbr{\begin{cases}y_1=9\\y_2=1\end{cases}}\)
Tọa độ (P) và (d): A(3; 9) và B(-1; 1)
b) Để (P) và (d) cắt nhau tại 2 điểm phân biệt <=> \(\Delta>0\)
<=> (-m)2 - 4.1(-3) > 0
<=> m2 + 12 > 0 \(\forall m\)
Ta có: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{3}{2}\)
<=> 2x2 + 2x1 = 3x1x2
<=> 2(x2 + x1) = 3x1x2
Theo viet, ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=m\\x_1x_2=\frac{c}{a}=-3\end{cases}}\)
<=> 2m = 3(-3)
<=> 2m = -9
<=> m = -9/2
ĐK \(x_2\ge0;\)
Phương trình hoành độ giao điểm
x2 = mx + m + 1
\(\Leftrightarrow x^2-mx-m-1=0\)
Có \(\Delta=m^2+4\left(m+1\right)=\left(m+2\right)^2\ge0\)
\(\Rightarrow\)Phương trình có nghiệm với mọi m
Phương trình 2 nghiệm \(\hept{\begin{cases}x_1=\frac{m-\left|m+2\right|}{2}\\x_2=\frac{m+\left|m+2\right|}{2}\end{cases}}\)
Khi m + 2 < 0 thì x1 = m + 1 ; x2 = -1 (loại)
khi m + 2 \(\ge0\)thì x1 = -1 ; x2 = m + 1
\(\Rightarrow x_1=-1;x_2=m+1\)nghiệm phương trình
Khi đó ta có -1 + m - m = \(\sqrt{m+1}-\sqrt[3]{8}\)
\(\Leftrightarrow\sqrt{m+1}=1\Leftrightarrow m=0\)(tm)
có y=-x^2 =>(x1-x2)^2+(x2^2-x1^2)^2 =25
ok rồi sau đó tựbiến đổi nhé . mình lười lắm :))))
b) Đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt
\(\Leftrightarrow x^2+2x-m+1=0\)có 2 nghiệm phận biệt \(\Leftrightarrow\Delta'=m>0\)
theo đinh lý ziet : \(x_1+x_2=-2,x_1x_2=-m+1\)
có \(y_1=2x_1-m+1,y_2=2x^2-m+1=>y_1-y_2=2\left(x_1-x_2\right)\)
Nên : \(25=\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2=5\left(x_1-x_2\right)^2=>\left(x_1-x_2\right)=5\)
hay \(\left(x_1+x_2\right)^2-4x_1x_2=5=>4-4\left(-m+1\right)=5=>m=\frac{5}{4}\left(TM\right)\)
xét phương trình hoành độ giao điểm của (d) và (p) có:
\(x^2=2\left(m-1\right)x+5-2m\)
\(\Leftrightarrow x^2-2\left(m-1\right)x-5+2m=0\)
ta có:
\(\Delta'=b'^2-ac\\ =\left(m-1\right)^2-\left(-5+2m\right)\)
\(=m^2-2m+1+5-2m=m^2-4m+6\)
=\(\left(m-2\right)^2+2>0\)(vì \(\left(m-2\right)^2\ge0\))
=> phương trình luôn có 2 nghiệm phân biệt
theo hệ thức vi-ét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-2m+2\left(1\right)\\x_1.x_2=5-2m\left(2\right)\end{matrix}\right.\)
theo bài ra ta có: \(x_1^2+x_2^2=6\Rightarrow\left(x_1+x_2\right)^2-2x_1.x_2=6\)(3)
từ (1) ; (2) và (3) ta có:
\(\left(-2m+2\right)^2-2.\left(5-2m\right)\)=6
\(\Leftrightarrow4m^2-8m+4-10+4m-6=0\)
\(\Leftrightarrow4m^2-4m-12=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=\frac{1-\sqrt{13}}{2}\\m=\frac{1+\sqrt{13}}{2}\end{matrix}\right.\)
vậy..
a) PT hoành dộ giao điểm d và (P):
x2-mx-m-1=0 (1). \(\Delta=\left(m+2\right)^2\)
d tiếp xúc với (P) <=> m=-2 tìm được x=-1
Tọa độ điểm A(-1;1)
b) Chỉ ra (1) luôn có nghiệm x=-1; x=m+1
Điều kiện để 2 giao điểm khác phía trục tung là:m >-1
Th1: với \(\hept{\begin{cases}x_1=-1\\x_2=m+1\end{cases}}\)tìm được m=\(\frac{-10}{3}\)(loại)
Th2: Với \(\hept{\begin{cases}x_1=m+1\\x_2=-1\end{cases}}\)tìm được m=0(tm)
a. Em tự giải
b.
Phương trình hoành độ giao điểm (d) và (P):
\(x^2=\left(m+2\right)x-m+3\Leftrightarrow x^2-\left(m+2\right)x+m-3=0\)
\(\Delta=\left(m+2\right)^2-4\left(m-3\right)=m^2+16>0;\forall m\)
(d) cắt (P) tại 2 điểm phân biệt với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1x_2=m-3\end{matrix}\right.\)
\(x_1^2+x_2^2+x_1x_2\le5\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-x_1x_2\le5\)
\(\Leftrightarrow\left(m+2\right)^2-\left(m-3\right)\le5\)
\(\Leftrightarrow m^2+3m+2\le0\)
\(\Leftrightarrow\left(m+1\right)\left(m+2\right)\le0\)
\(\Rightarrow-2\le m\le-1\)
a: khi m=3 thì (d): y=5x
PTHĐGĐ là:
x^2=5x
=>x=0 hoặc x=5
=>y=0 hoặc y=25
b:
PTHĐGĐ là:
x^2-(m+2)x+m+3=0
Δ=(m+2)^2-4(m+3)
=m^2+4m+4-4m-12=m^2-8
Để (d) cắt (P) tại 2 điểm pb thì m^2-8>0
=>m>2 căn 2 hoặc m<-2 căn 2
x1^2+x2^2+x1x2<=5
=>(x1+x2)^2-x1x2<=5
=>(m+2)^2-m-3<=5
=>m^2+4m+4-m-3-5<=0
=>m^2+3m-4<=0
=>(m+4)(m-1)<=0
=>-4<=m<=1