Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Lập phương trình hoành độ giao điểm:
x2 = mx + 3
<=> x2 - mx - 3 = 0
Tọa độ (P) và (d) khi m = 2:
<=> x2 - 2x - 3 = 0
<=> \(\orbr{\begin{cases}x_1=3\\x_2=-1\end{cases}}\) => \(\orbr{\begin{cases}y_1=9\\y_2=1\end{cases}}\)
Tọa độ (P) và (d): A(3; 9) và B(-1; 1)
b) Để (P) và (d) cắt nhau tại 2 điểm phân biệt <=> \(\Delta>0\)
<=> (-m)2 - 4.1(-3) > 0
<=> m2 + 12 > 0 \(\forall m\)
Ta có: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{3}{2}\)
<=> 2x2 + 2x1 = 3x1x2
<=> 2(x2 + x1) = 3x1x2
Theo viet, ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=m\\x_1x_2=\frac{c}{a}=-3\end{cases}}\)
<=> 2m = 3(-3)
<=> 2m = -9
<=> m = -9/2
Phương trình hoành độ giao điểm:
\(-\dfrac{1}{2}x^2=mx+m-3\Leftrightarrow x^2+2mx+2m-6=0\) (1)
a. Khi \(m=-1\), (1) trở thành:
\(x^2-2x-8=0\Rightarrow\left[{}\begin{matrix}x=4\Rightarrow y=-8\\x=-2\Rightarrow y=-2\end{matrix}\right.\)
Vậy (d) cắt (P) tại 2 điểm có tọa độ là \(\left(4;-8\right)\) ; \(\left(-2;-2\right)\)
b.
\(\Delta'=m^2-2m+6=\left(m+1\right)^2+5>0;\forall m\Rightarrow\left(1\right)\) có 2 nghiệm pb với mọi m
Hay (d) cắt (P) tại 2 điểm pb với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=2m-6\end{matrix}\right.\)
\(x_1^2+x_2^2=14\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=14\)
\(\Leftrightarrow4m^2-2\left(2m-6\right)=14\)
\(\Leftrightarrow4m^2-4m-2=0\Rightarrow m=\dfrac{1\pm\sqrt{3}}{2}\)
a: Phương trình hoành độ giao điểm là:
\(x^2=2mx+2m+8\)
=>\(x^2-2mx-2m-8=0\)(1)
Thay m=-4 vào (1), ta được:
\(x^2-2\cdot\left(-4\right)\cdot x-2\cdot\left(-4\right)-8=0\)
=>\(x^2+8x=0\)
=>x(x+8)=0
=>\(\left[{}\begin{matrix}x=0\\x=-8\end{matrix}\right.\)
Thay x=0 vào (P), ta được:
\(y=0^2=0\)
Thay x=-8 vào (P), ta được:
\(y=x^2=\left(-8\right)^2=64\)
Vậy: (P) và (d) cắt nhau tại O(0;0) và A(-8;64)
b: \(\text{Δ}=\left(-2m\right)^2-4\cdot1\cdot\left(-2m-8\right)\)
\(=4m^2+8m+32\)
\(=4m^2+8m+4+28=\left(2m+2\right)^2+28>=28>0\forall m\)
=>Phương trình (1)luôn có hai nghiệm phân biệt
=>(P) luôn cắt (d) tại hai điểm phân biệt
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m\\x_1\cdot x_2=\dfrac{c}{a}=-2m-8\end{matrix}\right.\)
mà \(x_1+2x_2=2\) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}x_1+2x_2=2\\x_1+x_2=2m\\x_1\cdot x_2=-2m-8\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x_2=2-2m\\x_1=2m-2+2m=4m-2\\x_1\cdot x_2=-2m-8\end{matrix}\right.\)
=>(2-2m)(4m-2)=-2m-8
=>\(8m-4-8m^2+4m=-2m-8\)
=>\(-8m^2+12m-4+2m+8=0\)
=>\(-8m^2+14m+4=0\)
=>\(-8m^2+16m-2m+4=0\)
=>-8m(m-2)-2(m-2)=0
=>(m-2)(-8m-2)=0
=>\(\left[{}\begin{matrix}m=2\\m=-\dfrac{1}{4}\end{matrix}\right.\)
a. Em tự giải
b,
Phương trình hoành độ giao điểm (d) và (P):
\(x^2=2mx+2m+8\Leftrightarrow x^2-2mx-2m-8=0\) (1)
\(\Delta'=m^2+2m+8=\left(m+1\right)^2+7>0;\forall m\)
\(\Rightarrow\left(1\right)\) luôn có 2 nghiệm pb với mọi m hay (d) luôn cắt (P) tại 2 điểm pb.
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-2m-8\end{matrix}\right.\)
Kết hợp hệ thức Viet và đề bài ta được:
\(\left\{{}\begin{matrix}x_1+2x_2=2\\x_1+x_2=2m\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_2=-2m+2\\x_1=4m-2\\\end{matrix}\right.\)
Thế vào \(x_1x_2=-2m-8\)
\(\Rightarrow\left(4m-2\right)\left(-2m+2\right)=-2m-8\)
\(\Leftrightarrow8m^2-14m-4=0\)
\(\Rightarrow\left[{}\begin{matrix}m=2\\m=-\dfrac{1}{4}\end{matrix}\right.\)
a: Thay x=-1 và y=3 vào (d), ta được:
-2-m+1=3
=>-1-m=3
=>m=-4
b: PTHĐGĐ là;
1/2x^2-2x+m-1=0
=>x^2-4x+2m-2=0
Δ=(-4)^2-4(2m-2)
=16-8m+8=-8m+24
Để (d) cắt (P) tại hai điểm phân biệt thì -8m+24>0
=>m<3
x1x2(y1+y2)+48=0
=>x1x2(x1^2+x2^2)+48=0
=>(2m-2)[4^2-2(2m-2)]+48=0
=>(2m-2)(16-4m+4)+48=0
=>(2m-2)*(20-4m)+48=0
=>40m-8m^2-40+8m+48=0
=>-8m^2+48m+8=0
=>m=3+căn 10 hoặc m=3-căn 10
a) Xét phương trình hoành độ giao điểm chung của (d) và (P) :
\(x^2=\left(2m-1\right)x-m^2+2\)
\(\Leftrightarrow x^2-\left(2m-1\right)x+m^2-2=0\left(1\right)\)
Thay m=2 vào pt (1) ta được:
\(x^2-3x+2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\Rightarrow y=1\\x=2\Rightarrow y=4\end{cases}}\)
Tọa độ giao điểm của (d) và (P) khi m=2 là \(A\left(1;1\right);B\left(2;4\right)\)
b) \(\Delta_{\left(1\right)}=\left(2m-1\right)^2-4m^2+8\)
\(=4m^2-4m+1-4m^2+8\)
\(=9-4m\)
Để pt (1) có 2 n ghiệm pb \(\Leftrightarrow9-4m>0\Leftrightarrow m< \frac{9}{4}\)
Theo hệ thức Vi-et ta có:
\(\hept{\begin{cases}x_1+x_2=2m-1\\x_1.x_2=m^2-2\left(1\right)\end{cases}}\)
Ta có: \(\hept{\begin{cases}x_1+x_2=2m-1\\x_1-3x_2=7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3x_1+3x_2=6m-3\\x_1-3x_2=7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x_1=\frac{3m+2}{2}\\x_2=\frac{m-4}{2}\end{cases}\left(3\right)}\)
Thay (3) vào (2) ta được:
\(\frac{3m+2}{2}.\frac{m-4}{2}=m^2-2\)
\(\Leftrightarrow\frac{3m^2-10m-8}{4}=m^2-2\)
\(\Rightarrow3m^2-10m-8=4m^2-8\)
\(\Leftrightarrow m^2+10m=0\)
\(\Leftrightarrow\orbr{\begin{cases}m=0\\m=-10\end{cases}\left(tm\right)}\)
Vậy ...
b: Thay m=2 vào (d), ta được:
y=2x-2+1=2x-1
Phương trình hoành độ giao điểm là:
\(x^2=2x-1\)
=>\(x^2-2x+1=0\)
=>(x-1)^2=0
=>x-1=0
=>x=1
Thay x=1 vào (P), ta được:
\(y=1^2=1\)
Vậy: Khi m=2 thì (P) cắt (d) tại A(1;1)
b: Phương trình hoành độ giao điểm là:
\(x^2=2x-m+1\)
=>\(x^2-2x+m-1=0\)
\(\text{Δ}=\left(-2\right)^2-4\cdot1\cdot\left(m-1\right)\)
=4-4m+4
=-4m+8
Để (P) cắt (d) tại hai điểm phân biệt thì Δ>0
=>-4m+8>0
=>-4m>-8
=>m<2
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\\x_1x_2=\dfrac{c}{a}=m-1\end{matrix}\right.\)
y1,y2 thỏa mãn gì vậy bạn?
a: Khi m=1 thì (d): \(y=3\cdot1\cdot x-3\cdot1+1=3x-2\)
Phương trình hoành độ giao điểm là:
\(x^2=3x-2\)
=>\(x^2-3x+2=0\)
=>(x-1)(x-2)=0
=>\(\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Khi x=1 thì \(y=x^2=1^2=1\)
Khi x=2 thì \(y=x^2=2^2=4\)
Vậy: (d) cắt (P) tại A(1;1); B(2;4)
b: Phương trình hoành độ giao điểm là:
\(x^2=3mx-3m+1\)
=>\(x^2-3mx+3m-1=0\)
\(\text{Δ}=\left(-3m\right)^2-4\left(3m-1\right)=9m^2-12m+4=\left(3m-2\right)^2\)
Để (d) cắt (P) tại hai điểm phân biệt thì Δ>0
=>\(\left(3m-2\right)^2>0\)
=>\(3m-2\ne0\)
=>\(m\ne\dfrac{2}{3}\)
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=3m\\x_1x_2=\dfrac{c}{a}=3m-1\end{matrix}\right.\)
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}x_1+x_2=3m\\x_1+2x_2=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1+2x_2-x_1-x_2=11-3m\\x_1+x_2=3m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x_2=11-3m\\x_1=3m-\left(11-3m\right)=6m-11\end{matrix}\right.\)
\(x_1x_2=3m-1\)
=>(11-3m)(6m-11)=3m-1
=>\(66m-121-18m^2+33m=3m-1\)
=>\(-18m^2+96m-120=0\)
=>\(\left[{}\begin{matrix}m=\dfrac{10}{3}\left(nhận\right)\\m=2\left(nhận\right)\end{matrix}\right.\)
Khi m = 1, phương trình đường thẳng (d) trở thành: y = 3x - 2
Để tìm tọa độ giao điểm của (P) và (d), ta giải hệ phương trình:
Thay y từ phương trình thứ hai vào phương trình thứ nhất, ta được:
Giải phương trình bậc hai này, ta được x = 1 hoặc x = 2.
Vậy khi m = 1, đường thẳng (d) cắt parabol (P) tại hai điểm có tọa độ là (1, 1) và (2, 4).
b) Tìm m để (d) cắt (P) tại hai điểm phân biệt có hoành độ x1, x2 thỏa mãn x1 + 2x2 = 11Để (d) cắt (P) tại hai điểm phân biệt thì phương trình hoành độ giao điểm:
phải có hai nghiệm phân biệt. Điều này xảy ra khi Δ > 0, tức là:
Bất phương trình trên luôn đúng với mọi m khác 2/3.
Theo định lý Vi-ét, ta có:
Ta có hệ thức: x₁ + 2x₂ = 11
Từ hệ thức trên và Vi-ét, ta có hệ phương trình:
Giải hệ phương trình này, ta được x₂ = 10 và x₁ = -19.
Thay x₁x₂ = 3m - 1, ta được:
Vậy với m = -63 thì đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có hoành độ x₁ và x₂ thỏa mãn x₁ + 2x₂ = 11.
Kết luận: