Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Mặt phẳng (P) cắt Ox, Oy, Oz tại M, N, P có phương trình x 2 + y b + z c = 1
Vì N thuộc mặt phẳng (P) ⇒ 1 2 + 2 b + 1 c = 1 ⇔ 1 b + 1 c = 1 2 ⇔ b c = 2 b + c .
Đáp án là C.
+ Tìm được M m ; m ; n 2 .
+ Ta có:
B M → = 0 ; m ; n 2 ; B D → = − m ; m ; 0 ; B A ' → = − m ; 0 ; n
B M → ; B D → = − m n 2 ; − m n 2 ; m 2 ; B M → ; B D → B A ' → = 3 2 m 2 n
V B M D A ' = 1 6 B M → ; B D → B A ' → = 1 4 m 2 n
mà n = 4 − m ⇒ V B M D A ' = − 1 4 m 3 + m 2 = f m
+ f ' m = − 3 4 m 2 + 2 m = 0 ⇔ m = 0 l o a i m = 8 3 ⇒ f m = 64 27
Giả sử C(c,3-c). Gọi I là giao điểm của AC và MN, suy ra \(\overrightarrow{AI}=\dfrac{2}{3}\overrightarrow{AC}=\left(\dfrac{2(c+2)}{3};\dfrac{2(3-c)}{3}\right)\)
Do đó \(I\left(\dfrac{2c-2}{3};\dfrac{6-2c}{3}\right)\in MN:7x-6y-5=0\Rightarrow c=\dfrac{5}{2}\). Vậy \(C\left(\dfrac{5}{2};\dfrac{1}{2}\right)\)
Trung điểm của AC là \(P\left(\dfrac{1}{4};\dfrac{1}{4}\right),\overrightarrow{AC}\left(\dfrac{7}{2};\dfrac{1}{2}\right)\Rightarrow B\left(\dfrac{1}{4}+t;\dfrac{1}{4}-7t\right), D\left(\dfrac{1}{4}-t;\dfrac{1}{4}+7t\right)\).
Vì \(BP=CP=\dfrac{AC}{2}=\dfrac{5\sqrt{2}}{2}\)nên \(t=\pm\dfrac{1}{2}\)
Vậy \(B\left(\dfrac{3}{4};-\dfrac{13}{4}\right),D\left(-\dfrac{1}{4};\dfrac{15}{4}\right)\)hoặc \(B\left(-\dfrac{1}{4};\dfrac{15}{4}\right),D\left(\dfrac{3}{4};-\dfrac{13}{4}\right)\).
Đường thẳng d đi qua M ( 0;-1;1 ) và có vectơ chỉ phương là u → 1 ; 2 ; 0 . Do d ⊂ P nên u → . n → = 0 ⇔ a + 2b = 0 nên a = -2b
Đáp án D