K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2017

Giải bài 3 trang 113 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 3 trang 113 sgk Hình học 11 | Để học tốt Toán 11

26 tháng 5 2017

Hỏi đáp Toán

25 tháng 3 2018

Giải sách bài tập Toán 11 | Giải sbt Toán 11

 Vì AD ⊥ (ABC) nên AD ⊥ BC

 Ngoài ra BC ⊥ AB nên ta có BC ⊥ (ABD)

 Vì mặt phẳng (BCD) chứa BC mà BC ⊥ (ABD) nên ta suy ra mặt phẳng (BCD) vuông góc với mặt phẳng (ABD).

 Hai mặt phẳng (BCD) và (ABD) vuông góc với nhau và có giao tuyến là BD. Đường thẳng AH thuộc mặt phẳng (ABD) và vuông góc với giao tuyến BD nên AH vuông góc với mặt phẳng (BCD).

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

Vectơ trong không gian, Quan hệ vuông góc

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

20 tháng 11 2018

Giải bài 2 trang 119 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 2 trang 119 sgk Hình học 11 | Để học tốt Toán 11

28 tháng 9 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Gọi A’ là giao điểm của AH và BC. Ta cần chứng minh ba điểm S, K, A’ thẳng hàng.

 Vì H là trực tâm của tam giác ABC nên AA′ ⊥ BC. Mặt khác theo giả thiết ta có: SA ⊥ (ABC), do đó SA ⊥ BC.

 Từ đó ta suy ra BC ⊥ (SAA′) và BC ⊥ SA′. Vậy SA’ là đường cao của tam giác SBC nên SA’ là phải đi qua trực tâm K. Vậy ba đường thẳng AH, SK và BC đồng quy.

 b) Vì K là trực tâm của tam giác SBC nên BK ⊥ SC (1)

 Mặt khác ta có BH ⊥ AC vì H là trực tâm của tam giác ABC và BH ⊥ SA vì SA ⊥ (ABC).

 Do đó BH ⊥ (ABC) nên BH ⊥ SC (2).

 Từ (1) và (2) ta suy ra SC ⊥ (BHK). Vì mặt phẳng (SAC) chứa SC mà SC ⊥ (BHK) nên ta có (SAC) ⊥ (BHK).

 c) Ta có

Giải sách bài tập Toán 11 | Giải sbt Toán 11

 Mặt phẳng (BHK) chứa HK mà HK ⊥ (SBC) nên (BHK) ⊥ (SBC).