Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Phương pháp giải:
Ứng dụng của tích có hướng để tìm vectơ pháp tuyến của mặt phẳng. Phương trình mặt phẳng đi qua M ( x 0 ; y 0 ; z 0 ) và có VTPT
Lời giải:
Vậy phương trình mặt phẳng (P): 2x-3y-z+7=0
Chọn D
Phương trình tham số của
D: x = - 2 t y = 2 + t z = - 1 + 3 t
Để D ∈ (P) thì phương trình (*) có vô số nghiệm
m + 3 n = 22 2 m - n = 16 , m = 10 n = 4
Vậy T=m+n=14
Đáp án D
Ta có d đi qua N(2;5;2) chỉ phương u d → = ( 1 ; 2 ; 1 ) đi qua N'(2;1;2) chỉ phương u d ' → = ( 1 ; - 2 ; 1 )
Gọi (R) là mặt phẳng chứa A và d, gọi (Q) là mặt phẳng chứa A¢ và d¢
Từ giả thiết ta nhận thấy điểm M nằm trong các mặt phẳng (R), (Q) nên đường thẳng cố định chứa M chính là giao tuyến của các mặt phẳng (R), (Q).
Vậy (R) đi qua N(2;5;2) có cặp chỉ phương là u d → = ( 1 ; 2 ; 1 ) , u → = ( 15 ; - 10 ; - 1 )
(R) đi qua A(a;0;0) => a=2
Tương tự (Q) đi qua N'(2;1;2) có cặp chỉ phương u d → = ( 1 ; 2 ; 1 ) , u → = ( 15 ; - 10 ; - 1 )
(Q) đi qua B(0;0;b) => b=4
Vậy T = a+b=6