Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi H,I lần lượt là hình chiếu vuông góc của O lên (P) và ∆ .
Ta có d ( O; ∆ ) = OI ≥ OH. Dấu “=” xảy ra khi I = H.
Đường thẳng OH qua O ( 0;0;0 ) nhận n → = ( 1;2;1 ) làm vectơ chỉ phương nên có phương trình là x = t y = 2 t z = t
Mặt phẳng (P) có phương trình: x + 2y + z - 6 = 0.
Từ hai phương trình trên suy ra t = 1 nên H ( 1;2;1 ).
Khi đó (Q) là mặt phẳng chứa d và đi qua H.
Ta có M ( 1;1;2 ) ∈ d , vectơ chỉ phương của d là u → = ( 1;1;-2 ); H M → = ( 0;-1;1 ).
Suy ra vectơ pháp tuyến của (Q) là n → = n → ; H M → = ( -1;-1;-1 ) . Hơn nữa (Q) qua điểm M ( 1;1;2 ) nên (Q) có phương trình là:x + y + z - 4 = 0
Đáp án C
Đáp án D
Phương pháp :
Gọi (Q): x + y + z + a = 0 (a≠3) là mặt phẳng song song với mặt phẳng (P).
Sử dụng công thức tính khoảng cách từ 1 điểm đến một mặt phẳng.
Cách giải :
Gọi (Q): x + y + z + a = 0 (a≠3) là mặt phẳng song song với mặt phẳng (P).
Với
Vậy không có mặt phẳng (Q) nào thỏa mãn điều kiện bài toán
Đáp án B.
Q / / P nên mặt phẳng (Q) có dạng:
2 x − 2 y + z + m = 0 với m ≠ − 5
Mặt phẳng (P) đi qua điểm M 1 ; 1 ; 5 . Theo đề:
d P , Q = 3 ⇔ d M , Q = 3 ⇔ 2.1 − 2.1 + 5 + m 2 2 + − 2 2 + 1 2 = 3 ⇔ m = 4 m = − 14 ⇔ Q : 2 x − 2 y + z + 4 = 0 Q : 2 x − 2 y + z − 14 = 0