Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D.
Gọi I là điểm thỏa mãn
Ta có:
=> M là hình chiếu của I trên (P) dễ thấy
Gọi G là trọng tâm tam giác ABC \(\Rightarrow G\left(2;1;0\right)\)
\(T=MA^2+MB^2+MC^2\)
\(T=\left(\overrightarrow{MG}+\overrightarrow{GA}\right)^2+\left(\overrightarrow{MG}+\overrightarrow{GB}\right)^2+\left(\overrightarrow{MG}+\overrightarrow{GC}\right)^2\)
\(T=3MG^2+GA^2+GB^2+GC^2+2\overrightarrow{MG}\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)\)
\(T=3MG^2+GA^2+GB^2+GC^2\)
Do \(GA^2+GB^2+GC^2\) cố định nên \(T_{min}\) khi \(MG_{min}\)
\(\Rightarrow M\) là hình chiếu vuông góc của G lên (P)
Gọi (d) là đường thẳng qua G và vuông góc (P) \(\Rightarrow\) pt (d): \(\left\{{}\begin{matrix}x=2+t\\y=1+t\\z=t\end{matrix}\right.\)
M là giao điểm (d) và (P) nên thỏa mãn:
\(2+t+1+t+t=0\Leftrightarrow t=-1\) \(\Rightarrow M\left(1;0;-1\right)\)
Đáp án A
Phương pháp
+) Gọi I là điểm thỏa mãn hệ thức I A → + I B → + 3 I C → = 0 → tìm tọa độ điểm I.
+) Chứng minh M A 2 + M B 2 + 3 M C 2 nhỏ nhất <=> MI nhỏ nhất.
+) MI nhỏ nhất <=> M là hình chiếu của I trên (P)
Cách giải
Gọi là điểm thỏa mãn ta có hệ phương trình:
Ta có:
Khi đó M là hình chiếu của I trên (P)
Gọi d là đường thẳng đi qua I và vuông góc với (P)
M ∈ (P) Suy ra
=> 3(3t+2) - 3(-3t+1)-2(-2t+1)-12=0
=> a+ b+ c =3
Chọn B
Ta có A, B cùng nằm về một phía của (P). Gọi A' đối xứng với A qua (P) suy ra A' (-2; 2; 1). Ta có MA + MB = MA' + MB ≥ BA'. Dấu bằng xảy ra khi M là giao điểm của BA' và (P). Xác định được . Suy ra Chọn B
Đáp án D.
Gọi G là trọng tâm của tam giác ABC, ta có G(2;1;0)
Ta có:
Từ hệ thức trên ta suy ra: M A 2 + M B 2 + M C 2 đạt GTNN
⇔ MG đạt GTNN ⇔ M là hình chiếu vuông góc của G trên (P)
Gọi (d) là đường thẳng qua G và vuông góc với (P) thì (d) có phương trình tham số là
Tọa độ điểm M là nghiệm của hệ phương trình:
Chọn A
Phương pháp:
+) Xác định điểm I thỏa mãn I A → + I B → - I C → = 0 →
+) Khi đó
nhỏ nhất khi và chỉ khi MI ngắn nhất ⇔ M là hình chiếu vuông góc của I lên (Oxy) .
Cách giải: