Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A
Phương pháp:
+) Xác định điểm I thỏa mãn I A → + I B → - I C → = 0 →
+) Khi đó
nhỏ nhất khi và chỉ khi MI ngắn nhất ⇔ M là hình chiếu vuông góc của I lên (Oxy) .
Cách giải:
Gọi G là trọng tâm tam giác ABC \(\Rightarrow G\left(2;1;0\right)\)
\(T=MA^2+MB^2+MC^2\)
\(T=\left(\overrightarrow{MG}+\overrightarrow{GA}\right)^2+\left(\overrightarrow{MG}+\overrightarrow{GB}\right)^2+\left(\overrightarrow{MG}+\overrightarrow{GC}\right)^2\)
\(T=3MG^2+GA^2+GB^2+GC^2+2\overrightarrow{MG}\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)\)
\(T=3MG^2+GA^2+GB^2+GC^2\)
Do \(GA^2+GB^2+GC^2\) cố định nên \(T_{min}\) khi \(MG_{min}\)
\(\Rightarrow M\) là hình chiếu vuông góc của G lên (P)
Gọi (d) là đường thẳng qua G và vuông góc (P) \(\Rightarrow\) pt (d): \(\left\{{}\begin{matrix}x=2+t\\y=1+t\\z=t\end{matrix}\right.\)
M là giao điểm (d) và (P) nên thỏa mãn:
\(2+t+1+t+t=0\Leftrightarrow t=-1\) \(\Rightarrow M\left(1;0;-1\right)\)
Đáp án D.
Gọi G là trọng tâm của tam giác ABC, ta có G(2;1;0)
Ta có:
Từ hệ thức trên ta suy ra: M A 2 + M B 2 + M C 2 đạt GTNN
⇔ MG đạt GTNN ⇔ M là hình chiếu vuông góc của G trên (P)
Gọi (d) là đường thẳng qua G và vuông góc với (P) thì (d) có phương trình tham số là
Tọa độ điểm M là nghiệm của hệ phương trình:
Chọn C
Ta có G(1;0;2), ta tìm hình chiếu của G lên mặt phẳng (P) bằng cách tìm giao điểm của đường thẳng qua G vuông góc với mặt phẳng (P) với mặt phẳng (P).
Phương trình đường thẳng qua điểm G và vuông góc với mặt phẳng (P)
Đáp án D.
Gọi I là điểm thỏa mãn
Ta có:
=> M là hình chiếu của I trên (P) dễ thấy