K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2018

Vậy mặt phẳng (ABC) luôn tiếp xúc mặt cầu tâm O, bán kính R = 2.

25 tháng 2 2018

Chọn D

Giả sử A (a; 0; 0), B (0; b; 0), C (0; 0; c) với a, b, c > 0

Khi đó mặt phẳng (P) có dạng .

Vì (P) đi qua M nên

Mặt khác OA = 2OB nên a = 2b nên 

Thể tích khối tứ diện OABC : V= abc/6

Ta có:

19 tháng 3 2019

Đáp án B

Phương pháp:

Chứng minh khoảng cách từ O đến (ABC) không đổi.

Cách giải:

ta có

Ta sẽ chứng minh OK không đổi, khi đó mặt phẳng (ABC) luôn tiếp xúc với mặt cầu tâm O bán kính OK

Xét tam giác vuông OCK có

Vậy mặt phẳng (ABC) luôn tiếp xúc với mặt cầu tâm O bán kính 2

27 tháng 4 2018

Chọn B

1 tháng 2 2017

Đáp án A

Phương pháp giải:

Xét vị trí tương đối của mặt phẳng, gọi phương trình tổng quát của mặt phẳng và tính toán dựa vào điều kiện tiếp xúc

Lời giải:

Gọi phương trình mặt phẳng cần tìm là (P): ax+by+cz+d=0

suy ra mp(P)//BC hoặc đi qua trung điểm của BC.

Mà  B C   → = ( - 4 ; 0 ; 0 )  và mp  vuông góc với mp (Oyz) => (P) //BC

Với  (P) //BC => a = 0 => by+cz+d=0

suy ra có ba mặt phẳng thỏa mãn

24 tháng 5 2017

Đáp án B.

10 tháng 2 2018

Đáp án B.

Lời giải sưu tầm :

Giả sử (P) tiếp xúc với (S1), (S2) lần lượt tại A,B

Gọi  ta kiểm tra được J là trung điểm IM do   suy ra M(2;1;9).

11 tháng 10 2017

Đáp án A.

Ta có:

13 tháng 2 2018

Chọn D

Gọi A (a;0;0), B (0;b;0), C (0;0;c), do A, B, C thuộc ba tia Ox, Oy, Oz nên a, b, c > 0.