K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2019

Đáp án A.

9 tháng 6 2017

Đáp án C

Vì AB giao mặt phẳng  α  tại A => A(1;2;0) 

Gọi H là hình chiếu của B trên  α

Khi đó

 

Và BHC vuông tại H và BC là cạnh huyền => BH<BC 

=> C là hình chiếu của B trên mặt phẳng  α  

=> phương trình BC

 

6 tháng 1 2018

Chọn C

 

Gọi M là trung điểm của AC. Khi đó M thuộc vào đường trung tuyến kẻ từ B của tam giác ABC.

Giả sử M (3 – t ; 3 + 2t ; 2 – t) Δ suy ra C (4-2t; 3+4t; 1-2t).

Mà C thuộc và đường phân giác trong d của góc C nên ta có: 

Suy ra C (4; 3; 1).

Gọi H là hình chiếu vuông góc của A trên đường phân giác trong d.

Suy ra H (2+2t';4-t';2-t') 

Ta có  ó 2. 2t'+ (-1) (1-t')+ (-1) (-1-t')=0 ó 4t'-1+t'+1+t'=0 ó t'=0

=> H (2;4;2).

Gọi A' đối xứng với A qua đường phân giác trong d.

Suy ra A’ ∈ (BC) và A' (2;5;1). Khi đó  là vectơ chỉ phương của đường thẳng BC.

28 tháng 10 2019

Chọn A

Gọi M(3-t; 3+2t; 2-t) là trung điểm cạnh AC, khi đó C(4-2t; 3+4t; 1-2t)

Mặt khác C thuộc đường phân giác trong góc C là tam giác nên 

Gọi A' đối xứng với A  qua phân giác trong góc C => A' ∈ CB

Mặt phẳng  α qua A  và vuông góc với đường phân giác trong góc C:

Mặt khác : H là trung điểm AA' nên A'(2;5;1) 

Phương trình đường thẳng BC qua A', C:

6 tháng 10 2018

12 tháng 12 2017

Đáp án C

Phương pháp:

+) Tam giác ABC có trung tuyến BM và phân giác CD.

+) Tham số hóa tọa độ điểm M là trung điểm của AC, tìm tọa độ điểm C theo tọa độ điểm M.

+) Tìm tọa độ điểm N đối xứng với M qua CD =>N ∈ BC => Phương trình đường thẳng BC

+) Tìm tọa độ điểm B=BM ∩ BC, khi đó mọi vector cùng phương với AB đều là VTCP của AB.

Cách giải:

Tam giác ABC có trung tuyến BM và phân giác CD.

Gọi M(30t; 3+2t;2-t) ∈ BM là trung điểm của AC ta có 

Gọi H là hình chiếu của M trên CD ta có 

Gọi N là điểm đối xứng với M qua CD => H là trung điểm của MN 

Do CD là phân giác của góc C nên N ∈ BC, do đó phương trình đường thẳng CB là

Xét hệ phương trình 

=> B(2;5;1)

5 tháng 4 2018

25 tháng 8 2018

Chọn A

Gọi  là trọng tâm tam giác ABC. Suy ra: G(2;-2;2)

Do tổng GAGBGC2 không đổi nên MAMBMC2 đạt giá trị nhỏ nhất khi và chỉ khi GM2 nhỏ nhất

Mà S nằm trên mặt phẳng (Oyz) nên M là hình chiếu vuông góc của G lên mặt phẳng (Oyz). Suy ra: M(0;-2;2)

Vậy P = x+y+z = 0 + (-2) + 2 = 0

12 tháng 12 2017

Đáp án C.

29 tháng 6 2018

Đáp án A

Gọi M là trung điểm của AC, E là chân đường phân giác trong góc C. Ta có:

 Vì M thuộc đường trung tuyến kẻ từ B có phương trình

Kẻ AH vuông góc với CE tại H, cắt BC tại D => Tam giác ACD cân tại C vậy H là trung điểm của AD.

vectơ chỉ phương của CE là   u → 1 =(2;-1;-1)

A B → =(0;2;-2). u → =(m;n;-1) là một vectơ chỉ phương của AB

=> A B → và  u →  cùng phương.