K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 7 2021

Bài này cần có 1 điều gì đó đặc biệt trong các đường - mặt để giải được (nếu ko chỉ dựa trên khoảng cách thông thường thì gần như bất lực). Thường khoảng cách dính tới đường vuông góc chung, thử mò dựa trên nó :)

Bây giờ chúng ta đi tìm đường vuông góc chung d3 của d1; d2, và hi vọng rằng giao điểm C của d3 với (P) sẽ là 1 điểm nằm giữa A và B với A và giao của d1 và d3, B là giao của d2 và d3 (nằm giữa chứ ko cần trung điểm), thường ý tưởng của người ra đề sẽ là như vậy. Khi đó điểm M sẽ trùng C. Còn C không nằm giữa A và B mà nằm ngoài thì đầu hàng cho đỡ mất thời gian (khi đó việc tìm cực trị sẽ rất lâu).

Quy pt d1 và d2 về dạng tham số, gọi A là 1 điểm thuộc d1 thì \(A\left(t+1;t+2;2t\right)\) và B là 1 điểm thuộc d2 thì \(B\left(t'+1;2t'+3;3t'+4\right)\)

\(\Rightarrow\overrightarrow{AB}=\left(t'-t;2t'-t+1;3t'-2t+4\right)\)

\(\left\{{}\begin{matrix}\overrightarrow{AB}.\overrightarrow{u_{d1}}=0\\\overrightarrow{AB}.\overrightarrow{u_{d2}}=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}t'-t+2t'-t+1+2\left(3t'-2t+4\right)=0\\t'-t+2\left(2t'-t+1\right)+3\left(3t'-2t+4\right)=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}t=0\\t'=-1\end{matrix}\right.\)  \(\Rightarrow\left\{{}\begin{matrix}A\left(1;2;0\right)\\B\left(0;1;1\right)\end{matrix}\right.\) \(\Rightarrow\overrightarrow{BA}=\left(1;1-1\right)\)

Phương trình AB hay d3: \(\left\{{}\begin{matrix}x=1+t\\y=2+t\\z=-t\end{matrix}\right.\)

Giao điểm C của d3 và (P): \(2\left(1+t\right)+2\left(2+t\right)-2t-5=0\)

\(\Rightarrow C\left(\dfrac{1}{2};\dfrac{3}{2};\dfrac{1}{2}\right)\)

Ủa, ko chỉ nằm giữa luôn, mà người ta cho hẳn trung điểm cho cẩn thận :)

Vậy \(M\left(\dfrac{1}{2};\dfrac{3}{2};\dfrac{1}{2}\right)\)

25 tháng 7 2021

Bài giải chi tiết quá ạ :)) Em cảm ơn nhiều ạ :vv

14 tháng 3 2018

Đáp án A.

19 tháng 8 2019

Đáp án D.

7 tháng 3 2018

Đáp án B.

12 tháng 9 2018

Chọn C

NV
14 tháng 4 2022

Mặt phẳng (P) qua A và vuông góc d có phương trình:

\(2\left(x-1\right)+2\left(y+1\right)+1\left(z-1\right)=0\)

\(\Leftrightarrow2x+2y+z-1=0\)

Đường thẳng d' song song d và đi qua B (nên d' vuông góc (P)) có dạng:

\(\left\{{}\begin{matrix}x=4+2t\\y=2+2t\\z=-2+t\end{matrix}\right.\)

\(\Rightarrow\) Giao điểm C của d' và (P) thỏa mãn: 

\(2\left(4+2t\right)+2\left(2+2t\right)-2+t-1=0\Rightarrow t=-1\Rightarrow C\left(2;0;-3\right)\)

\(\Rightarrow\overrightarrow{AC}=\left(1;1;-4\right)\Rightarrow\) là 1 vtcp của \(\Delta\Rightarrow\) D là đáp án đúng

14 tháng 4 2022

Thầy ơi sao con làm cách này lại không được ạ?

undefined

14 tháng 12 2019

Chọn D

8 tháng 1 2017

Đáp án A.

Đường thẳng d qua điểm M(2;-2;1) và có vectơ chỉ phương  u → = ( - 3 ; 1 ; - 2 )

Đường thẳng d' qua điểm N(0;4;2) và có vectơ chỉ phương  u ' → = 6 ; - 2 ; 4

Ta có - 3 6 = 1 - 2 = - 2 4  nếu u → ,   u ' →  cùng phương. Lại có   M 2 ; - 2 ; - 1  

Vậy  d ∥ d '

10 tháng 8 2019

Chọn A

Vì A thuộc  nên A (1+2t;1-t;-1+t).

Vì B thuộc  nên B (-2+3t';-1+t';2+2t').

Thay vào (3) ta được t=1, t'=2 thỏa mãn.