K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2017

Giải bài 45 trang 80 SGK Toán 8 Tập 2 | Giải toán lớp 8

HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

a) Vì \(MN//BC\left( {M \in AB,N \in AC} \right)\) nên \(\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}}\)(định lí Thales).

b) Vì \(AM = DE\) mà \(\frac{{DE}}{{AB}} = \frac{1}{3} \Rightarrow \frac{{AM}}{{AB}} = \frac{1}{3} \Rightarrow \frac{{AN}}{{AC}} = \frac{1}{3} \Rightarrow AN = \frac{1}{3}AC\).

Lại có \(DF = \frac{1}{3}AC\) nên \(AN = DF = \frac{1}{3}AC\).

c) Vì \(MN//BC \Rightarrow \Delta ABC\backsim\Delta AMN\) (định lí)(1)

d) Dự đoán  hai tam giác \(DEF\) và \(ABC\) đồng dạng.

HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

a)  Vì \(ED//AB \Rightarrow \Delta DEC\backsim\Delta ABC\) (định lí)

b) Vì \(ED//AB \Rightarrow \widehat {CDE} = \widehat {CAB}\) (hai góc đồng vị)

Mà \(\widehat {CAB} = \widehat {A'}\). Do đó, \(\widehat {CDE} = \widehat {B'A'C'}\).

Xét tam giác \(A'B'C'\) và tam giác \(DEC\) ta có:

\(\widehat {B'A'C'} = \widehat {CDE}\) (chứng minh trên)

\(A'C' = CD\) (giải thuyết)

\(\widehat {C'} = \widehat C\) (giả thuyết)

Do đó, \(\Delta A'B'C' = \Delta DEC\) (g.c.g)

c) Vì tam giác \(\Delta A'B'C'\backsim\Delta DEC\) (tính chất)

Mà \(\Delta DEC\backsim\Delta ABC\) nên \(\Delta ABC\backsim\Delta A'B'C'\).

AH
Akai Haruma
Giáo viên
30 tháng 1 2021

Bạn xem lại xem có viết nhầm đề không. Theo hình vẽ thì 2 góc không bằng nhau.

undefined

AH
Akai Haruma
Giáo viên
30 tháng 1 2021

Mình nghĩ bạn viết nhầm đề. Lời giải bài tương tự ở đây:

https://hoc24.vn/cau-hoi/cho-tam-giac-abc-vuong-tai-a-tren-cac-canh-abbcca-lan-luot-lay-cac-diem-def-sao-cho-deperp-bc-dedf-goi-m-la-trung-diem-cua-ef-chung-minh.260248714837

HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

a)  Ta có: \(\Delta ABC\backsim\Delta A'B'C'\) thì \(\left\{ \begin{array}{l}\widehat A = \widehat {A'};\widehat B = \widehat {B'};\widehat C = \widehat {C'}\\\frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}} = \frac{{B'C'}}{{BC}} = k\end{array} \right.\).

b) Xét tam giác \(DEF\) có:

\(\widehat D + \widehat E + \widehat F = 180^\circ \) (tổng ba góc trong một tam giác).

Ta có: \(\widehat D = 78^\circ ;\widehat E = 57^\circ \) thay số ta được

\(78^\circ  + 57^\circ  + \widehat F = 180^\circ  \Rightarrow \widehat F = 180^\circ  - 78^\circ  - 57^\circ  = 45^\circ \)

Ta có: \(\Delta DEF\backsim\Delta D'E'F' \Rightarrow \widehat D = \widehat {D'};\widehat E = \widehat {E'};\widehat F = \widehat {F'}\) (các góc tương ứng bằng nhau)

Do đó,  \(\widehat D = \widehat {D'} = 78^\circ ;\widehat F = \widehat {F'} = 45^\circ \).

c) Ta có  \(\Delta MNP\backsim\Delta M'N'P' \Rightarrow \frac{{MN}}{{M'N'}} = \frac{{MP}}{{M'P'}} = \frac{{NP}}{{N'P'}}\) (các cặp cạnh tương ứng có cùng tỉ lệ).

Với \(MP = 10;NP = 6;M'N' = 15;N'P' = 12\) thay vào ta được:

\( \Rightarrow \left\{ \begin{array}{l}\frac{{MN}}{{15}} = \frac{1}{2}\\\frac{{10}}{{M'P'}} = \frac{1}{2}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}MN = \frac{{15.1}}{2} = 7,5\\M'P' = \frac{{10.2}}{1} = 20\end{array} \right.\).

Vậy \(MN = 7,5;M'P' = 20\).