K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
10 tháng 9 2023

Xét tam giác ABC và tam giác ADB có 

\(\widehat {ABC} = \widehat {A{\rm{D}}B}\) và \(\widehat A\) chung

=> ΔABC ∽ ΔADB (g.g)

=> \(\frac{{AB}}{{AD}} = \frac{{AC}}{{AB}}\)

=> \(A{B^2} = A{\rm{D}}.AC\)

HQ
Hà Quang Minh
Giáo viên
10 tháng 9 2023

- Có \(\frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}} = \frac{2}{3}\)

- Có \(\frac{{B'C'}}{{BC}} = \frac{2}{3}\)

- Tam giác A'B'C' có đồng dạng với tam giác ABC và đồng dạng với tỉ số \(\frac{2}{3}\)

HQ
Hà Quang Minh
Giáo viên
10 tháng 9 2023

Xét hai tam giác vuông HBA và tam giác vuông HDC nhận thấy:

\(\frac{{AB}}{{C{\rm{D}}}} = \frac{{AH}}{{CH}} = \frac{2}{3}\)

=> Hai tam giác đồng dạng 

\( \Rightarrow \widehat {AB{\rm{D}}} = \widehat {C{\rm{D}}B}\)

10 tháng 9 2023

\(\widehat{BHA}=\widehat{CHD}=90^0\)

mới ⇒ đc Hai tam giác đồng dạng (c-g-c) ah

HQ
Hà Quang Minh
Giáo viên
12 tháng 1 2024

a) Vì ABCD là hình bình hành nên AB // CD; AD // BC.

Suy ra \(\widehat {BAC} = \widehat {AC{\rm{D}}};\widehat {BCA} = \widehat {DAC}\)(hai góc so le trong).

Xét ∆ABC và ∆CDA có:

\(\widehat {BAC} = \widehat {AC{\rm{D}}}\) (chứng minh trên);

Cạnh AC chung.

 \(\widehat {BCA} = \widehat {DAC}\) (chứng minh trên);

Do đó ∆ABC = ∆CDA (g.c.g).

Suy ra AB = CD, AD = BC (các cặp cạnh tương ứng); \(\widehat {ABC} = \widehat {C{\rm{D}}A}\) (hai góc tương ứng).

b) Xét ∆ABD và ∆CDB có:

AB = CD (chứng minh trên);

AD = BC (chứng minh trên);

Cạnh BD chung.

Do đó ∆ABD = ∆CDB.

Suy ra \(\widehat {DAB} = \widehat {BC{\rm{D}}}\) (hai góc tương ứng).

c) Xét ∆AOB và ∆COD có:

\(\widehat {BAC} = \widehat {AC{\rm{D}}}\) (chứng minh trên);

AB = CD (chứng minh trên);

\(\widehat {BCA} = \widehat {DAC}\) (chứng minh trên);

Do đó ∆AOB = ∆COD (g.c.g).

Suy ra OA = OC, OB = OD (các cặp cạnh tương ứng).

HQ
Hà Quang Minh
Giáo viên
11 tháng 1 2024

a, Do ABCD là hình bình hành: AB = CD.

Do ABMN là hình bình hành: AB = MN

Suy ra: CD = MN = AB

b, Do ABCD là hình bình hành \( \Rightarrow \widehat {BCD} = \widehat {DAB}\)

Do ABMN là hình bình hành \( \Rightarrow \widehat {BMN} = \widehat {NAB}\)

\(\widehat {BCD} + \widehat {BMN} = \widehat {DAB} + \widehat {NAB} = \widehat {DAN}\)

HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

a) Xét tam giác \(ABD\) và tam giác \(ACB\) có:

\(\widehat {ABD} = \widehat {ACB}\) (giả thuyết)

\(\widehat A\) chung

Suy ra, \(\Delta ABD\backsim\Delta ACB\) (g.g)

b) Vì \(\Delta ABD\backsim\Delta ACB\)

Suy ra, \(\frac{{AB}}{{AC}} = \frac{{AD}}{{AB}}\) (các cặp cạnh tương ứng có cùng tỉ lệ).

Suy ra, \(A{B^2} = AC.AD = 9.4 = 36 \Rightarrow AB = \sqrt {36}  = 6\)

Vậy \(AB = 6cm.\)

HQ
Hà Quang Minh
Giáo viên
11 tháng 1 2024

a, Xét \(\Delta ADC\)và \(\Delta BDC\)có:

DC là cạnh chung.

\(\widehat {ADC} = \widehat {BCD}\)(do ABCD là hình thang cân)

AD = BC

\( \Rightarrow \Delta ADC = \Delta BDC(c.g.c)\)

\( \Rightarrow \widehat {CAD} = \widehat {DBC}\)(2 góc tương ứng) hay

Do: \(\Delta ADC = \Delta BDC\)

Xét \(\Delta BAD\)và \(\Delta ACB\)có:

AB chung

AD = BC

AC = BD

\( \Rightarrow \Delta BDA = \Delta ACB\) (c.c.c)

\( \Rightarrow \widehat {BDA} = \widehat {ACB}\)(2 góc tương ứng) hay \(\widehat {TDA} = \widehat {TCB}\)

b, Xét \(\Delta TAD\)và \(\Delta TBC\)có:

\(\widehat {TAD} = \widehat {TBC}\)(theo câu a)

AD = BC (ABCD là hình thang cân)

\(\widehat {TDA} = \widehat {TCB}\)(theo câu a)

\( \Rightarrow \Delta TAD = \Delta TBC \Rightarrow TA = TB,TC = TD\)

c, Vì: TA = TB \( \Rightarrow \Delta ATB\)cân tại T suy ra TM là trung trực của AB

TC = TD \( \Rightarrow \Delta DTC\)cân tại T suy ra TN là trung trực của CD

Mà: M, T, N thẳng hàng. Nên MN là đường trung trực của cả 2 đường thẳng AB và CD

QT
Quoc Tran Anh Le
Giáo viên
14 tháng 1 2024

a) Dùng Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 trong công cụ Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 để kiểm tra trung điểm AC và BD, ta thấy trung điểm AC và BD trùng nhau.

Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

b) Lưu hình vẽ ở HĐ2 thành tệp hbh.png.

Vào Hồ sơ → Chọn Xuất bản → Chọn PNG image (.png).

Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Trên màn hình hiện lên cửa sổ như sau:

Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Ta đổi tên tệp thành hbh (như hình vẽ), sau đó chọn xuất bản.

Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

c) Tương tự, ta vẽ một hình thoi ABCD có cạnh 4 cm theo các bước sau:

Bước 1. Vẽ đoạn thẳng AB và có độ dài 4 cm tương tự như Bước 1 của HĐ1.

Bước 2. Vẽ điểm C sao cho BC = 4 cm.

Chọn công cụ Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Nháy chuột vào điểm B, nhập bán kính bằng 4.

Chọn công cụ Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn điểm C bất kỳ nằm trên đường tròn tâm B.

Chọn công cụ Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Nháy chuột vào điểm C, nhập bán kính bằng 4.

Chọn công cụ Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Lần lượt nháy chuột đường tròn tâm A và đường tròn C.

Chọn công cụ Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 để nối B với C, C với D, D với A.

Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Bước 3. Ẩn đường tròn và thu được hình thoi ABCD.

Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

HQ
Hà Quang Minh
Giáo viên
12 tháng 1 2024

Ta có \(\widehat A = \widehat {{D_1}}\) mà hai góc này ở vị trí đồng vị nên AB // CD.

Suy ra tứ giác ABCD là hình thang.

Mặt khác hình thang ABCD có \(\widehat A = \widehat B\) nên ABCD là hình thang cân.

Do đó AD = BC (đpcm).

HQ
Hà Quang Minh
Giáo viên
10 tháng 9 2023

Ta có: \(\frac{{AB}}{{DE}} = 2{;^{}}\frac{{BC}}{{EF}} = 2{;^{}}\frac{{AC}}{{DF}} = 2\)

10 tháng 9 2023

Ta có:\(\dfrac{AB}{DE}=2;\dfrac{BC}{EF}=2;\dfrac{AC}{DF}=2\)