K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2018

Bình phương a và b lên để so sánh

25 tháng 4 2020

\(a=\sqrt{1969}+\sqrt{1971}\)

\(\Rightarrow a^2=1969+2\sqrt{1969\cdot1971}+1971\)

\(\Rightarrow a^2=2\cdot1970+2\sqrt{1969\cdot1971}\)                        (1)

\(b=2\cdot\sqrt{1970}\)

\(\Rightarrow b^2=4\cdot1970=2\cdot1970+2\cdot1970\)                   (2)

có : \(1969+1971\ge2\sqrt{1969\cdot1971}\)

\(\Rightarrow2\cdot1970\ge2\sqrt{1969\cdot1971}\)    vì 1969 khác 1971

\(\Rightarrow2\cdot1970>2\sqrt{1969\cdot1971}\)               (3)

\(\left(1\right)\left(2\right)\left(3\right)\Rightarrow a^2< b^2\) mà a;b không âm

\(\Rightarrow a< b\)

23 tháng 4 2017

\(\sqrt{1969}+\sqrt{1971}< 2\sqrt{1970}\)

10 tháng 8 2017

So sánh:\(\sqrt{1969}+\sqrt{1971}\)\(2\sqrt{1970}\)

Ko bt bn giả ra chưa nhưng mk sẽ giải thử:

Áp dụng bất đẳng thức Bu-nhi- a -cốp- xki ta có:

\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)thay vào đề bài đc:

\(\left(\sqrt{1969}+\sqrt{1971}\right)^2\le2\left(1969+1971\right)=\)

\(2.2.1970=4.1970\)\(=\left(2\sqrt{1970}\right)^2\) (1)

Hiển nhiên ko có dấu "=" vì \(a\ne b\) \(\left(\sqrt{1969}< \sqrt{1971}\right)\) (2)

(1); (2) \(\Rightarrow\left(2\sqrt{1970}\right)^2>\left(\sqrt{1969}+\sqrt{1971}\right)^2\)

\(\Rightarrow\sqrt{1969}+\sqrt{1971}< 2\sqrt{1970}\)(đpcm)

7 tháng 8 2020

CM cái sau: 

Ta có: \(a+\frac{1}{a}=\frac{a}{1}+\frac{1}{a}\ge2\sqrt{\frac{a}{1}.\frac{1}{a}}=2.1=2\) (bất đẳng thức Cauchy)

Chứng minh: 

\(\left(a-b\right)^2\ge0\left(\forall a,b\right)\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow a+b\ge2\sqrt{ab}\)

(áp dụng vào cái trên)

7 tháng 8 2020

Dấu "=" xảy ra khi:

\(a=\frac{1}{a}\Leftrightarrow a^2=1\Rightarrow a=1\left(a>0\right)\)

17 tháng 11 2019

Thế muốn giải thích thì liệt kê đau đầu =(

\(\frac{3}{\sqrt{7}-5}-\frac{3}{\sqrt{7+5}}=\frac{-10}{9}\inℚ\)

\(\frac{\sqrt{7}+5}{\sqrt{7}-5}+\frac{\sqrt{7}-5}{\sqrt{7}+5}=12\inℚ\)

Đây là TH là số hữu tỉ còn lại.....

\(\frac{4}{2-\sqrt{3}}-\frac{4}{2+\sqrt{3}}=8\sqrt{3}\notinℚ\)

\(\frac{\sqrt{3}}{\sqrt{7}-2}-2\sqrt{7}=2-\sqrt{7}\notinℚ\)

18 tháng 11 2016

Số hữu tỷ là: 1,5

Số vop tỷ là 

\(\frac{\sqrt{3}+\sqrt{2}}{2}\)

Bài 1: Rút gon biểu thức bằng cách đưa thưa số ra ngoài dấu căna) \(\sqrt{245.35}\)             c) \(\sqrt{63a^2}\) với a < 0              e)\(\frac{2xy^2}{3ab}\sqrt{\frac{9a^3b^4}{8xy^3}}\)           h) \(\sqrt{49.360}\)b) -\(\sqrt{500.162}\)      d) \(\frac{1}{3}\sqrt{225a^2}\)                      g) \(\sqrt{125a^2}\) với a < 0Bài 2: Đưa thừa số vào trong dấu căn a) 5\(\sqrt{2}\)      b) -2\(\sqrt{5}\)     ...
Đọc tiếp

Bài 1: Rút gon biểu thức bằng cách đưa thưa số ra ngoài dấu căn

a) \(\sqrt{245.35}\)             c) \(\sqrt{63a^2}\) với a < 0              e)\(\frac{2xy^2}{3ab}\sqrt{\frac{9a^3b^4}{8xy^3}}\)           h) \(\sqrt{49.360}\)

b) -\(\sqrt{500.162}\)      d) \(\frac{1}{3}\sqrt{225a^2}\)                      g) \(\sqrt{125a^2}\) với a < 0

Bài 2: Đưa thừa số vào trong dấu căn 

a) 5\(\sqrt{2}\)      b) -2\(\sqrt{5}\)      c) x.\(\sqrt{\frac{21}{xy}}\)với x ; y >0        d) x.\(\sqrt{\frac{-39}{x}}\)với x < 0

Bài 3: Sắp xếp theo thứ tự tăng dần 

a) \(5\sqrt{2};2\sqrt{5};2\sqrt{3};3\sqrt{2}\)                  b) \(4\sqrt{2};\sqrt{37};3\sqrt{7};2\sqrt{15}\)

 

c) \(\sqrt{27};6\sqrt{\frac{1}{3}};2\sqrt{28};5\sqrt{7}\)            c) \(3\sqrt{6};2\sqrt{7};\sqrt{39};5\sqrt{2}\)

 

Bài 4: So sánh 

a) \(\sqrt{15}-\sqrt{14}\)và \(\sqrt{14}-\sqrt{13}\)     b) \(\sqrt{105}-\sqrt{101}\) và \(\sqrt{101}-\sqrt{97}\)

Bài 5: Rút gọn

a) \(3\sqrt{2}+4\sqrt{8}-\sqrt{18}\)            c ) \(\sqrt{25a}+\sqrt{49a}-\sqrt{64a}\) với    \(a\ge0\)

b) \(\sqrt{3}-\frac{1}{3}\sqrt{27}+2\sqrt{507}\)        d) \(-\sqrt{36b}-\frac{1}{3}\sqrt{54b}+\frac{1}{5}\sqrt{150b}\) với \(b\ge0\)

 

 

 

 

 

 

 

 

 

0