K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2019

Tam thức g(x) = -3x2 + 7x – 4 có hai nghiệm là 1 và 4/3 , hệ số a= - 3 < 0

Do đó, với x < 1 hoặc x > 4/3 thì g(x) cùng dấu với hệ số của x2

2 tháng 11 2018

Tam thức f(x) = -2x2 + 3x + 5 có hai nghiệm là – 1 và 5/2 ; hệ số a= - 2 < 0.

Do đó, với -1 < x < 5/2 thì f(x) trái dấu với hệ số của x2

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) Dựa vào đồ thị ta thấy hàm số đã cho vô nghiệm

          Biệt thức \(\Delta  = {2^2} - 4.\left( { - 1} \right).\left( { - 2} \right) =  - 4 < 0\)

          Ta thấy hệ số của \({x^2}\) là \( - 1 < 0\)

          Đồ thị nằm dưới trục hoành với mọi x

Nên \(f\left( x \right)\) cùng dấu với hệ số của \({x^2}\) với \(\forall x \in \mathbb{R}\)

b) Dựa vào đồ thị ta thấy hàm số đã cho có nghiệm kép \({x_1} = {x_2} = 1\)

Biệt thức \(\Delta  = {2^2} - 4.\left( { - 1} \right).\left( { - 1} \right) = 0\)

          Ta thấy hệ số của \({x^2}\) là \( - 1 < 0\)

          Đồ thị nằm dưới trục hoành với mọi x

Nên \(f\left( x \right)\) cùng dấu với hệ số của \({x^2}\) với \(\forall x \in \mathbb{R}\)

c) Dựa vào đồ thị ta thấy hàm số đã cho có hai nghiệm phân biệt  \({x_1} =  - 1;{x_2} = 3\)

Biệt thức \(\Delta  = {2^2} - 4.\left( { - 1} \right).3 = 16 > 0\)

          Ta thấy hệ số của \({x^2}\) là \( - 1 < 0\)

Đồ thị nằm dưới trục hoành khi  \(x \in \left( { - \infty , - 1} \right) \cup \left( {3, + \infty } \right)\)

Đồ thị nằm trên trục hoành với mọi \(x \in \left( { - 1,3} \right)\)

Nên \(f\left( x \right)\) cùng dấu với hệ số của \({x^2}\) khi \(x \in \left( { - \infty , - 1} \right) \cup \left( {3, + \infty } \right)\)

d) Dựa vào đồ thị ta thấy hàm số bậc hai đã cho vô nghiệm

Biệt thức \(\Delta  = {6^2} - 4.1.10 =  - 4 < 0\)

          Ta thấy hệ số của \({x^2}\) là \(1 > 0\)

Đồ thị nằm trên trục hoành với mọi \(x\)

Nên \(f\left( x \right)\) cùng dấu với hệ số của \({x^2}\) với mọi \(x \in \mathbb{R}\)

e) Dựa vào đồ thị ta thấy hàm số đã cho có nghiệm kép \({x_1} = {x_2} =  - 3\)

Biệt thức \(\Delta  = {6^2} - 4.1.9 = 0\)

          Ta thấy hệ số của \({x^2}\) là \(1 > 0\)

          Đồ thị nằm trên trục hoành với mọi x

Nên \(f\left( x \right)\) cùng dấu với hệ số của \({x^2}\) với mọi \(x \in \mathbb{R}\)

g) ) Dựa vào đồ thị ta thấy hàm số đã cho có hai nghiệm phân biệt  \({x_1} =  - 4;{x_2} =  - 2\)

Biệt thức \(\Delta  = {6^2} - 4.1.8 = 4 > 0\)

          Ta thấy hệ số của \({x^2}\) là \(1 > 0\)

Đồ thị nằm trên trục hoành khi  \(x \in \left( { - \infty , - 4} \right) \cup \left( { - 2, + \infty } \right)\)

Đồ thị nằm dưới trục hoành với mọi \(x \in \left( { - 4, - 2} \right)\)

Nên \(f\left( x \right)\) cùng dấu với hệ số của \({x^2}\) khi \(x \in \left( { - \infty , - 4} \right) \cup \left( { - 2, + \infty } \right)\)

21 tháng 10 2018

-2x + 3 > 0 ⇔ -2x > -3 ⇔ x < 3/2

Biểu diễn tập nghiệm trên trục số:

Giải bài tập Toán 10 | Giải Toán lớp 10

Nhị thức f(x) = -2x + 3 có giá trị:

Trái dấu với hệ số của x khi x < 3/2

Cùng dấu với hệ số của x khi x > 3/2

a) Ta có: \(f\left(x\right)=x\left(x^2+x-2\right)=x\left(x-1\right)\left(x+2\right)\)

  Lập bảng xét dấu 

undefined

Vậy để \(f\left(x\right)>0\) \(\Leftrightarrow x\in\left(-2;0\right)\cup\left(1;+\infty\right)\)

b) Ta có: \(\left(3x^2+7x-6\right)\left(5x+8\right)^2\le0\)

\(\Leftrightarrow3x^2+7x-6\le0\) \(\Leftrightarrow-3\le x\le\dfrac{2}{3}\)

  Vậy \(x\in\left[-3;\dfrac{2}{3}\right]\)  

I.ĐẠI SỐ CHƯƠNG 4. BẤT ĐẲNG THỨC. BẤT PHƯƠNG TRÌNH 1. Bất phương trình Khái niệm bất phương trình. Nghiệm của bất phương trình. Bất phương trình tương đương. Phép biến đổi tương đương các bất phương trình. 2. Dấu của một nhị thức bậc nhất Dấu của một nhị thức bậc nhất. Hệ bất phương trình bậc nhất một ẩn. 3. Dấu của tam thức bậc hai Dấu của tam thức bậc...
Đọc tiếp
I.ĐẠI SỐ CHƯƠNG 4. BẤT ĐẲNG THỨC. BẤT PHƯƠNG TRÌNH 1. Bất phương trình Khái niệm bất phương trình. Nghiệm của bất phương trình. Bất phương trình tương đương. Phép biến đổi tương đương các bất phương trình. 2. Dấu của một nhị thức bậc nhất Dấu của một nhị thức bậc nhất. Hệ bất phương trình bậc nhất một ẩn. 3. Dấu của tam thức bậc hai Dấu của tam thức bậc hai. Bất phương trình bậc hai. Bài tập. 1. Xét dấu biểu thức f(x) = (2x - 1)(5 -x)(x - 7). g(x)= [1/(3-x)]-[1/(3+x)] h(x) = -3x2 + 2x – 7 k(x) = x2 - 8x + 15 2. Giải bất phương trình a) [(5-x)(x-7)]/x-1 > 0 b) –x2 + 6x - 9 > 0; c) -12x2 + 3x + 1 < 0. g) (2x - 8)(x2 - 4x + 3) > 0 h) k) l). (1 – x )( x2 + x – 6 ) > 0 m). 3. Giải bất phương trình a/ b/ c/ d/ e/ 4) Giải hệ bất phương trình sau a) . b) . c) d) 5) Với giá trị nào của m, phương trình sau có nghiệm? a) x2+ (3 - m)x + 3 - 2m = 0. b) 6) Cho phương trình : Với giá nào của m thì : a) Phương trình vô nghiệm b) Phương trình có các nghiệm trái dấu 7) Tìm m để bpt sau có tập nghiệm là R: a) b) 8) Xác định giá trị tham số m để phương trình sau vô nghiệm: x2 – 2 (m – 1 ) x – m2 – 3m + 1 = 0. 9) Cho f (x ) = ( m + 1 ) x – 2 ( m +1) x – 1 a) Tìm m để phương trình f (x ) = 0 có nghiệm b). Tìm m để f (x) 0 ,
0

Bài 2:

a: =>2x^2-4x+1=x^2+x+5

=>x^2-5x-4=0

=>\(x=\dfrac{5\pm\sqrt{41}}{2}\)

b: =>11x^2-14x-12=3x^2+4x-7

=>8x^2-18x-5=0

=>x=5/2 hoặc x=-1/4

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Hệ số a là: a=1

\(f(0) = {0^2} - 4.0 + 3 = 3\)

\(f(1) = {1^2} - 4.1 + 3 = 0\)

\(f(2) = {2^2} - 4.2 + 3 =  - 1\)

\(f(3) = {3^2} - 4.3 + 3 = 0\)

\(f(4) = {4^2} - 4.4 + 3 = 3\)

=> f(0); f(4) cùng dấu với hệ số a; f(2) khác dấu với hệ số a

b) Nhìn vào đồ thị ta thấy

- Trên khoảng \(\left( { - \infty ;1} \right)\) đồ thị nằm phía trên trục hoành

- Trên khoảng \(\left( {1;3} \right)\), đồ thị nằm phía dưới trục hoành

- Trên khoảng \(\left( {3; + \infty } \right)\), đồ thị nằm phía trên trục hoành

c) - Trên khoảng \(\left( { - \infty ;1} \right)\) đồ thị nằm phía trên trục hoành => f(x)>0, cùng dầu với hệ số a

- Trên khoảng \(\left( {1;3} \right)\), đồ thị nằm phía dưới trục hoành => f(x) <0, khác dấu với hệ số a

- Trên khoảng \(\left( {3; + \infty } \right)\), đồ thị nằm phía trên trục hoành => f(x)>0, cùng dấu với hệ số a

21 tháng 3 2021

undefined

22 tháng 12 2021

a: Để phương trình có hai nghiệm trái dấu thì m+2<0

hay m<-2