Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
I*AB=> SI\(\perp\)AB
SI=\(SI=\frac{AB\sqrt{3}}{2}=\frac{a\sqrt{3}}{2}\)
\(V_{k.chop}=\frac{1}{3}.\frac{a\sqrt{3}}{2}.a^2=\frac{a^3\sqrt{3}}{4}\)
b) Kẻ IK//DM(K\(\in\)AD)
Kẻ KH\(\perp\)DM(H\(\in\)DM)
=> d(I,DM)=d(K,DM0=KH
\(\Delta IAK~\Delta DCM\Rightarrow AK=\frac{1}{2}CM=\frac{a}{6}\)=> KD=5a/6
\(cos\widehat{ADM}=cos\widehat{DMC}=\frac{CM}{DM}=\frac{\frac{a}{3}}{\frac{a\sqrt{10}}{3}}=\frac{1}{\sqrt{10}}\)
=> KH=KDsin\(\widehat{ADM}\)=\(\sqrt{1-\cos\widehat{ADM}^2}=\frac{5a}{6}.\frac{3}{\sqrt{10}}=\frac{a\sqrt{10}}{4}\)
d(S,DM)=\(\sqrt{SI^2+d\left(I,DM\right)^2}=\frac{a\sqrt{22}}{4}\)
Bạn tham khảo bài này nhé
Câu hỏi của Bảo Sinh - Toán lớp 12 | Học trực tuyến
Câu hỏi của Vũ Trịnh Hoài Nam - Toán lớp 12 | Học trực tuyến
Hai mặt phẳng (SAB) và (SAC) cùng vuông góc với (ABC) \(\Rightarrow SA\perp\left(ABC\right)\)
\(AB\perp BC\Rightarrow SB\perp BC\Rightarrow\widehat{SBA}\) là góc giữa 2 mặt phẳng (SBC) và mặt phẳng (ABC)
\(\Rightarrow\widehat{SBA}=60^o\)
\(\Rightarrow SA=AB.\tan\widehat{SBA}=2a\sqrt{3}\)
Mặt phẳng qua SM và song song với BC, cắt AC tại N
\(\Rightarrow MN||BC\) và N là trung điểm của \(AC\\ \)
\(MN=\frac{BC}{2}=a;BM=\frac{AB}{2}=a\)
Diện tích \(S_{BCNM}=\frac{\left(BC+MN\right).BM}{2}=\frac{3a^2}{2}\)
Thể tích \(V_{S.BCNM}=\frac{1}{3}S_{BCNM}.SA=a^3\sqrt{3}\)
Kẻ đường thẳng \(\Delta\) đi qua N, song song với AB
Hạ \(AD\perp\Delta\left(D\in\Delta\right)\Rightarrow AB||\left(SND\right)\)
\(\Rightarrow d\left(AB;SN\right)=d\left(AB,\left(SND\right)\right)=d\left(A,\left(SND\right)\right)\)
Hạ \(AH\perp SD\left(H\in SD\right)\Rightarrow AH\perp\left(SND\right)\Rightarrow d\left(A,\left(SND\right)\right)=AH\)
Tam giác SAD vuông tại A : \(\begin{cases}AH\perp SD\\AD=MN=a\end{cases}\)
\(\Rightarrow d\left(AB,SN\right)=AH=\frac{SA.AD}{\sqrt{SA^2+AD^2}}=\frac{2a\sqrt{39}}{13}\)
1.
Trước hết bạn nhớ công thức:
$1^2+2^2+....+n^2=\frac{n(n+1)(2n+1)}{6}$ (cách cm ở đây: https://hoc24.vn/cau-hoi/tinh-tongs-122232n2.83618073020)
Áp vào bài:
\(\lim\frac{1}{n^3}[1^2+2^2+....+(n-1)^2]=\lim \frac{1}{n^3}.\frac{(n-1)n(2n-1)}{6}=\lim \frac{n(n-1)(2n-1)}{6n^3}\)
\(=\lim \frac{(n-1)(2n-1)}{6n^2}=\lim (\frac{n-1}{n}.\frac{2n-1}{6n})=\lim (1-\frac{1}{n})(\frac{1}{3}-\frac{1}{6n})\)
\(=1.\frac{1}{3}=\frac{1}{3}\)
2.
\(\lim \frac{1}{n}\left[(x+\frac{a}{n})+(x+\frac{2a}{n})+...+(x.\frac{(n-1)a}{n}\right]\)
\(=\lim \frac{1}{n}\left[\underbrace{(x+x+...+x)}_{n-1}+\frac{a(1+2+...+n-1)}{n} \right]\)
\(=\lim \frac{1}{n}[(n-1)x+a(n-1)]=\lim \frac{n-1}{n}(x+a)=\lim (1-\frac{1}{n})(x+a)\)
\(=x+a\)
Dùng định lý hàm số Cosin tính được \(MN=2a\sqrt{3}\)
\(AM=2a\sqrt{2},AN=2a\). Tam giác vuông SAC có SC=2SA nên góc ASC =60 độ suy ra tam giác AMN vuông tại A.
Gọi H là trung điểm của MN, vì SA=SM=SN và tam giác AMN vuông tại A \(\Rightarrow SH\perp\left(AMN\right)\), tính được SH=a
Tính được \(V_{S.AMN}=\frac{2\sqrt{2}a^3}{3}\)
\(\frac{V_{S.AMN}}{V_{S.ABC}}=\frac{SM.SN}{SB.SC}=\frac{1}{3}\) \(\Rightarrow V_{S.ABC}=2\sqrt{2}a^3\)
Vậy d(C;(SAB)) =\(\frac{3V_{S.ABC}}{S_{\Delta SAB}}=\frac{6a^3\sqrt{2}}{3a^2}=2a\sqrt{2}\)