Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Bây giờ mình mới biết bạn đăng bài
Ta có hình vẽ :
a) Vì DE và DF nằm cùng trên tia Dx và nằm cùng phía với nhau
mà DE = 2cm < DF = 6cm =) E nằm giữa D và F
=) DE + EF = DF
=) 2 + EF = 6
=) EF = 6 - 2 = 4 ( cm )
b) Vì I là trung điểm của EF
=) EI = IF = EF/2 = 4/2 = 2 ( cm )
c) Vì DE = 2cm
EI = 2cm
IF = 2cm
=) DE = EI = IF = 2cm
Bạn tự vẽ hình nha
a.
Xét tam giác MBE và tam giác MCA có:
MB = CM (AM là trung tuyến của tam giác ABC => M là trung điểm của BC)
BME = CMA (2 góc đối đỉnh)
AM = EM (gt)
=> Tam giác MBE = Tam giác MCA (c.g.c)
=> BE = CA (2 cạnh tương ứng)
=> MEB = MAC (2 góc tương ứng)
mà 2 góc này ở vị trsi so le trong
=> BE // AC
b.
BE // AC (theo câu a)
=> AFD = BED (2 góc so le trong)
Xét tam giác DFA và tam giác DEB có:
AFD = BED (chứng minh trên)
DF = DE (gt)
FDA = EDB (2 góc đối đỉnh)
=> Tam giác DFA = Tam giác DEB (g.c.g)
=> FA = EB (2 cạnh tương ứng)
mà EB = AC (theo câu a)
=> FA = AC
=> A là trung điểm của FC
c.
Tam giác ABC có:
AB < AC (gt)
mà AC = EB (theo câu a)
=> AB < EB
=> BEM < BAM (quan hệ giữa góc và cạnh đối diện trong tam giác)
mà BEM = CAM (tam giác MBE = tam giác MCA)
=> CAM < BAM
Chúc bạn học tốt
Phương An giúp mình làm bài hình còn lai được không?
đề nè
cho góc nhọn xOy; trên tia Ox lấy A(A#O); trên tia Oy lấy điểm B (B # O)sao cho OA = OB; kẻ ACvuông góc với OY (CE Oy) ; BD vuông góc Ox ( D E Ox); I là giao diểm của AC và BD
a. chứng minh tam giác AOC= tam giác BOD
b. So sánh IC và IA
c. Chứng minh tam giác AIB cân
d. Chứng minh góc IAB=M góc 1\2 góc AOB
a)Xét\(\Delta DEF\)có:\(EF^2=DE^2+DF^2\)(Định lý Py-ta-go)
hay\(5^2=3^2+DF^2\)
\(\Rightarrow DF^2=5^2-3^2=25-9=16\)
\(\Rightarrow DF=\sqrt{16}=4\left(cm\right)\)
Ta có:\(DE=3cm\)
\(DF=4cm\)
\(EF=5cm\)
\(\Rightarrow DE< DF< EF\)hay\(3< 4< 5\)
b)Xét\(\Delta DEF\)và\(\Delta DKF\)có:
\(DE=DK\)(\(D\)là trung điểm của\(EK\))
\(\widehat{EDF}=\widehat{KDF}\left(=90^o\right)\)
\(DF\)là cạnh chung
Do đó:\(\Delta DEF=\Delta DKF\)(c-g-c)
\(\Rightarrow EF=KF\)(2 cạnh t/ứ)
Xét\(\Delta KEF\)có:\(EF=KF\left(cmt\right)\)
Do đó:\(\Delta KEF\)cân tại\(F\)(Định nghĩa\(\Delta\)cân)
c)Ta có:\(DF\)cắt\(EK\)tại\(D\)là trung điểm của\(EK\Rightarrow DF\)là đg trung tuyến xuất phát từ đỉnh\(F\)của\(\Delta KEF\)
\(KI\)cắt\(EF\)tại\(I\)là trung điểm của\(EF\Rightarrow KI\)là đg trung tuyến xuất phát từ đỉnh\(K\)của\(\Delta KEF\)
Ta lại có:\(DF\)cắt\(KI\)tại\(G\)
mà\(DF\)là đg trung tuyến xuất phát từ đỉnh\(F\)của\(\Delta KEF\)
\(KI\)là đg trung tuyến xuất phát từ đỉnh\(K\)của\(\Delta KEF\)
\(\Rightarrow G\)là trọng tâm của\(\Delta KEF\)
\(\Rightarrow GF=\frac{2}{3}DF\)(Định lí về TC của 3 đg trung tuyến của 1\(\Delta\))
\(=\frac{2}{3}.4=\frac{8}{3}\approx2,7\left(cm\right)\)
Vậy\(GF\approx2,7cm\)
a: Xét tứ giác ABCE có
D là trung điểm của AC
D là trung điểm của BE
Do đó: ABCE là hình bình hành
Suy ra: AB//CE
a)Ta có : AB = AC
=> △ ABC cân tại A
Xét △ ABC cân tại A có :
AD là đường trung tuyến
=> AD là đường phân giác
Xét △ ADE vuông tại E và △ ADF vuông tại F có :
AD là cạnh chung
DAEˆ=DAFˆDAE^=DAF^ ( AD là đường phân giác )
Vậy △ ADE = △ ADF (ch-gn)
=> AE = AF ( hai cạnh tương ứng )
=> A nằm trên đường trung trực của EF (1)
Lại có : DE = DF ( △ ADE = △ ADF )
=> D nằm trên đường trung trực của EF (2)
Từ (1), (2) => AD là đường trung trực của EF
Mấy câu sau bạn tự làm nhé