Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
SABC = SOAB - SOAC -SOBC
= 3.4 /2 - 3.1/2 - 4.1/2
= 6 - 1,5 - 2
= 2,5
Ta có :
AB = \(\sqrt{\left(1+3\right)^2+\left(4+4\right)^2}=4\sqrt{5}\)
AC = \(\sqrt{\left(1-1\right)^2+\left(4-0\right)^2}=4\)
BC = \(\sqrt{\left(-3-1\right)^2+\left(-4-0\right)^2}=4\sqrt{2}\)
=> p = \(\frac{4\sqrt{5}+4+4\sqrt{2}}{2}\)
=> \(S_{\Delta ABC}=\sqrt{p\left(p-AB\right)\left(p-AC\right)\left(p-BC\right)}=\sqrt{64}=8\)
( TÍNH THEO CÔNG THỨC HERON )
Ta có :
AB = √(1+3)2+(4+4)2=4√5
AC = √(1−1)2+(4−0)2=4
BC = √(−3−1)2+(−4−0)2=4√2
=> p = 4√5+4+4√22
=> SΔABC=√p(p−AB)(p−AC)(p−BC)=√64=8
a) Các điểm A, B, C được vẽ trên một mặt phẳng tọa độ Oxy (h.6.5)
b) Để ABCD là một hình vuông thì tọa độ của điểm D là (6; 6).
c) Có BC = 4 (đơn vị độ dài) nên chu vi hình vuông ABCD bằng 4.4=16 (đơn vị độ dài) và diện tích hình vuông bằng