Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
△ ABC = △ CDA (c.c.c) ⇒ S A B C = S C D A (1)
△ EFC = △ CHE (c.c.c) ⇒ S E F C = S C H E (2)
Từ (1) và (2) ⇒ S A B C - S E F C = S C D A - S C H E
Hay S A B C F E = S A E H D
Hình ABCFE không phải là tứ giác lồi vì nó nằm trên hai nửa mặt phẳng có bờ là đường thẳng chứa cạnh CF.
Ta có:
△ ABE = △ CDF (g.c.g) ⇒ S A B E = S C D F (l)
△ AED = △ CFB (g.c.g) ⇒ S A E D = S C F B (2)
Từ (1) và (2) ⇒ S A B E + S C F B = S C D F + S A E D
Hay S A B C F E = S A D C F E
Hình ABCFE không phải là đa giác lồi vì nó nằm trên hai nửa mặt phẳng có bờ là đường thẳng chứa cạnh EF.
Hình ADCFE không phải là đa giác lồi vì nó nằm trên hai nửa mặt phẳng có bờ là đường thẳng chứa cạnh EF.
a) Trong tứ giác DEBF có:
Hai đường chéo BD và EF cắt nhau tại trung điểm O
Các cạnh đối BE và DF bằng nhau
\(\Rightarrow\) Tứ giác DEBF là hình bình hành.
b) Gọi O là giao điểm hai đường chéo của hình bình hành ABCD, ta có O là trung điểm của BD.
Theo câu a), DEBF là hình bình hành nên trung điểm O của BD cũng là trung điểm của EF.
Vậy AC, BD, EF cùng cắt nhau tại điểm O.
c) \(\Delta ABD\) có các đường trung tuyến AO, DE cắt nhau ở M nên OM = \(\dfrac{1}{3}\) OA.
\(\Delta CBD\) có các đường trung tuyến CO, BF cắt nhau ở N nên ON = \(\dfrac{1}{3}\) OC.
Tứ giác EMFN có các đường chéo cắt nhau tại trung điểm của mỗi đường OM = ON, OE = OF nên là hình bình hành.