K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: C là điểm chính giữa của cung AB

=>OC vuông góc AB

góc OHE=góc OME=90 độ

=>OHME nội tiếp

b: góc AMB=1/2*sđ cung AB=90 độ

=>góc AMH+góc AOH=180 độ

=>OHMA nội tiếp

=>O,H,M,E,A cùng thuộc 1 đường tròn

=>góc EAO=90 độ

OHEA có 3 góc vuông

=>OHEA là hcn

=>EH=OA=R

6 tháng 1 2021

a) AC \(\perp\) DE tại M

=> MD = ME

Tứ giác ADBE có:

MD =ME, MA = MB (gt) 

AB \(\perp\) DE

=> Tứ giác DAEB là hình thoi

b) Ta có: góc BIC = 90o (góc nội tiếp chắn nửa đường tròn (O'))

góc ADC = 90(góc nội tiếp chắn nửa đường tròn (O))

=> BI \(\perp\) CD , AD \(\perp\) DC, nên AI // BI

mà BE //AD => E,B,I thẳng hàng

Tam giác DIE có MI là đường trung tuyến với cạnh huyền => MI = MD

Do MI =MD(cmt)

=> tam giác MDI cân tại M

=> góc MID = góc MDI

O'I = O'C=R'

=> tam giác O'IC cân tại O'

=> Góc O'IC = góc O'CI

Suy ra: \(\widehat{MID}+\widehat{O'IC}=\widehat{MDI}+\widehat{O'CI}=90^o\) (tam giác MCD vuông tại M)

Vậy MI vuông góc O'I tại , O'I =R' bán kính đường tròn(O')

=> MI là tiếp tuyến đường tròn (O')

c) \(\widehat{BIC}=\widehat{BIM}\) (góc nội tiếp, góc tạo bởi tia tiếp tuyến và dây cùng chắn cung BI)

\(\widehat{BCI}=\widehat{BIH}\) (cùng phụ góc HIC)

=> \(\widehat{BIM}=\widehat{BIH}\)

=> IB là phân giác \(\widehat{MIH}\) trong tam giác MIH

ta lại có BI vuông góc CI

=> IC là phân giác ngoài tại đỉnh I của tam giác MIH

Áp dụng tính chất phân giác đối với tam giác MIH

\(\dfrac{BH}{MB}=\dfrac{IH}{MI}=\dfrac{CH}{CM}\) => \(CH.BM=BH.MC\) (đpcm)

 

 

a: góc ANM+góc ACM=180 độ

=>ANMC nội tiếp

b: Xét ΔANM vuông tại N và ΔADB vuông tại D có

góc NAM chung

=>ΔANM đồng dạng với ΔADB

=>AN/AD=AM/AB

=>AM*AD=AN*AB

29 tháng 5 2021

a) Vì TO là đường kính \(\Rightarrow\angle TMO=90\) mà \(M\in\left(O\right)\Rightarrow TM\) là tiếp tuyến của (O)

b) Xét \(\Delta TMC\) và \(\Delta TDM:\) Ta có: \(\left\{{}\begin{matrix}\angle MTDchung\\\angle TMC=\angle TDM\end{matrix}\right.\)

\(\Rightarrow\Delta TMD\sim\Delta TCM\left(g-g\right)\Rightarrow\dfrac{TC}{TM}=\dfrac{TM}{TD}\Rightarrow TC.TD=TM^2\)

c) Vì đường tròn đường kính TO có tâm I và đường tròn (O) cắt nhau tại M và N \(\Rightarrow\) IO là trung trực của MN \(\Rightarrow MN\bot TO\)

mà \(\Delta TMO\) vuông tại M \(\Rightarrow TM^2=TE.TO\) (hệ thức lượng)

mà \(TC.TD=TM^2\Rightarrow TC.TD=TE.TO\Rightarrow\dfrac{TC}{TE}=\dfrac{TO}{TD}\)

Xét \(\Delta TEC\) và \(\Delta TDO:\) Ta có: \(\left\{{}\begin{matrix}\angle OTDchung\\\dfrac{TC}{TE}=\dfrac{TO}{TD}\end{matrix}\right.\)

\(\Rightarrow\Delta TEC\sim\Delta TDO\left(c-g-c\right)\Rightarrow\angle TEC=\angle TDO\Rightarrow ODCE\) nội tiếp

16 tháng 7 2020

A H O B N C M D x y

Ax \(\perp\) AB

By \(\perp\) AB

Suy ra: Ax // By hay AC // BD

Trong tam giác BND, ta có AC // BD

Suy ra:  \(\frac{ND}{NA}=\frac{BD}{AC}\)(hệ quả định lí Ta-lét)     (1)

Theo tính chất hai tiếp tuyến cắt nhau, ta có:

AC = CM và BD = DM      (2)

Từ (1) và (2) suy ra: \(\frac{ND}{NA}=\frac{MD}{MC}\)

Trong tam giác ACD, ta có: \(\frac{ND}{NA}=\frac{MD}{MC}\)

Suy ra: MN // AC (theo định lí đảo định lí Ta-lét)

Mà: AC \(\perp\) AB (vì Ax \(\perp\) AB)

Suy ra: MN \(\perp\) AB

b. Trong tam giác ACD, ta có: MN // AC

Suy ra: \(\frac{MN}{AC}=\frac{DN}{DA}\) (hệ quả định lí Ta-lét)     (3)

Trong tam giác ABC, ta có: MH // AC (vì M, N, H thẳng hàng)

Suy ra: \(\frac{HN}{AC}=\frac{BN}{BC}\) (hệ quả định lí Ta-lét)     (4)

Trong tam giác BDN, ta có: AC // BD

Suy ra: \(\frac{ND}{NA}=\frac{BN}{NC}\) (hệ quả định lí Ta-lét)

\(\Rightarrow\frac{ND}{\left(DN+NA\right)}=\frac{BN}{\left(BN+NC\right)}\Leftrightarrow\frac{ND}{DA}=\frac{BN}{BC}\left(5\right)\)

Từ (3), (4) và (5) suy ra: MN/AC = HN/AC => MN = HN