Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: AC=AB+BC
BD=CD+BC
mà AB=CD
nên AC=BD
2: OB+BA=OA
OC+CD=OD
mà OB=OC; AB=CD
nên OA=OD
=>O là trung điểm của AD
\(1,BM//AD\Rightarrow\widehat{BMA}=\widehat{MAD};\widehat{BAM}=\widehat{AMD}\\ \left\{{}\begin{matrix}\widehat{BMA}=\widehat{MAD}\\AM.chung\\\widehat{BAM}=\widehat{AMD}\end{matrix}\right.\Rightarrow\Delta ABM=\Delta MDA\left(g.c.g\right)\\ \Rightarrow AD=BM;MD=AB\\ \)
Chứng minh tương tự, ta được \(\Delta ACM=\Delta MEA\left(g.c.g\right)\)
\(\Rightarrow AE=MC;ME=AC\\ \Rightarrow DE=DA+AE=BM+MC=BC\\ \left\{{}\begin{matrix}DE=BC\\AC=ME\\AB=MD\end{matrix}\right.\Rightarrow\Delta ABC=\Delta MDE\left(c.c.c\right)\)
\(b,\)
\(AE//CM\Rightarrow\widehat{OAE}=\widehat{OMC};\widehat{OEA}=\widehat{OCM}\\ Mà.AE=CM\\ \Rightarrow\Delta OAE=\Delta OMC\left(g.c.g\right)\\ \Rightarrow OA=OM\\ AD//BM\Rightarrow\widehat{OAD}=\widehat{OMB}\\ Mà.AD=BM\\ \Rightarrow\Delta OAD=\Delta OMB\left(c.g.c\right)\\ \Rightarrow\widehat{AOD}=\widehat{MOB}\\ \Rightarrow\widehat{BOD}=\widehat{AOD}+\widehat{AOB}=\widehat{MOB}+\widehat{AOB}=\widehat{AOM}=180^0\\ \Rightarrow B;O;D.thẳng.hàng\)
xin lỗi bạn mình mệt quá từ nảy bấm muốn rụng hai cái tay luôn
a) Xét tam giác ABE và tam giác ACD có :
AB = AC ( tam giác Abc cân tại A )
AE = AD
Chung \(\widehat{BAC}\)
\(\Rightarrow\) tam giác ABE = tam giác ACD ( c-g-c )
\(\Rightarrow\hept{\begin{cases}BE=CD\left(đpcm\right)\\\widehat{ABE}=\widehat{ACD}\end{cases}}\)
Mà \(\widehat{ABE}+\widehat{OBC}=\widehat{ACD}+\widehat{OCB}\)
\(\Rightarrow\widehat{OBC}=\widehat{OCB}\)
\(\Rightarrow\) tam giác COB cân tại O \(\Rightarrow OB=OC\left(đpcm\right)\)
c) Xét tam giác AOB và tam giác AOC có :
AB = AC
BO = CO
Chung AO
\(\Rightarrow\) tam giác AOB = tam giác AOC ( c-c-c )
\(\Rightarrow\widehat{BAO}=\widehat{CAO}\)
\(\Rightarrow\) OC là tia phân giác \(\widehat{BAC}\)(1)
Mà tam giác ABC cân tại A (2)
Từ (1) và (2) \(\Rightarrow\)AO là trung trực BC