K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: AC=AB+BC

BD=CD+BC

mà AB=CD

nên AC=BD

2: OB+BA=OA

OC+CD=OD

mà OB=OC; AB=CD

nên OA=OD

=>O là trung điểm của AD

2 tháng 10 2021

\(1,BM//AD\Rightarrow\widehat{BMA}=\widehat{MAD};\widehat{BAM}=\widehat{AMD}\\ \left\{{}\begin{matrix}\widehat{BMA}=\widehat{MAD}\\AM.chung\\\widehat{BAM}=\widehat{AMD}\end{matrix}\right.\Rightarrow\Delta ABM=\Delta MDA\left(g.c.g\right)\\ \Rightarrow AD=BM;MD=AB\\ \)

Chứng minh tương tự, ta được \(\Delta ACM=\Delta MEA\left(g.c.g\right)\)

\(\Rightarrow AE=MC;ME=AC\\ \Rightarrow DE=DA+AE=BM+MC=BC\\ \left\{{}\begin{matrix}DE=BC\\AC=ME\\AB=MD\end{matrix}\right.\Rightarrow\Delta ABC=\Delta MDE\left(c.c.c\right)\)

\(b,\) 

\(AE//CM\Rightarrow\widehat{OAE}=\widehat{OMC};\widehat{OEA}=\widehat{OCM}\\ Mà.AE=CM\\ \Rightarrow\Delta OAE=\Delta OMC\left(g.c.g\right)\\ \Rightarrow OA=OM\\ AD//BM\Rightarrow\widehat{OAD}=\widehat{OMB}\\ Mà.AD=BM\\ \Rightarrow\Delta OAD=\Delta OMB\left(c.g.c\right)\\ \Rightarrow\widehat{AOD}=\widehat{MOB}\\ \Rightarrow\widehat{BOD}=\widehat{AOD}+\widehat{AOB}=\widehat{MOB}+\widehat{AOB}=\widehat{AOM}=180^0\\ \Rightarrow B;O;D.thẳng.hàng\)

 

1) Tam giác ABC có I là giao điểm các tia phân giác của góc B và C, M là trung điểm của BC. Biết góc BIM=90 và BI=2IMa. Tính góc BACb.Vẽ IH vuông góc AC. Chứng minh rằng BA=3IH2)Cho tam giác ABC. Lấy các điểm D, E theo thứ tự trên các cạnh AB, AC sao cho BD=CE. Gọi M, N theo thứ tự là trung điểm của BC, DE. Chứng minh rằng đường thẳng MN tạo với các đường thẳng AB, AC các góc bằng nhau3)Cho tam giác ABC. Ở...
Đọc tiếp

1) Tam giác ABC có I là giao điểm các tia phân giác của góc B và C, M là trung điểm của BC. Biết góc BIM=90 và BI=2IM
a. Tính góc BAC
b.Vẽ IH vuông góc AC. Chứng minh rằng BA=3IH

2)Cho tam giác ABC. Lấy các điểm D, E theo thứ tự trên các cạnh AB, AC sao cho BD=CE. Gọi M, N theo thứ tự là trung điểm của BC, DE. Chứng minh rằng đường thẳng MN tạo với các đường thẳng AB, AC các góc bằng nhau

3)Cho tam giác ABC. Ở phía ngoài tam giác ấy vẽ tam giác đều ACE. Trên nửa mặt phẳng chứa C có bờ AB, vẽ tam giác đều ABD. Gọi H, K, M theo thứ tự là trung điểm của AB, AE, CD. Chứng minh rằng HKM là tam giác đều

4)Cho điểm M nằm trên đoạn thẳng AB. Trên cùng một nửa mặt phẳng bờ AB, vẽ các tam giác đều AMC, BMD. Gọi E, F theo thứ tự là trung điểm của AD, BC. Chứng minh rằng EF=1/2CD

0
28 tháng 11 2016

xin lỗi bạn mình mệt quá từ nảy bấm muốn rụng hai cái tay luôn

28 tháng 11 2016

bấm có mấy chữ mà muốn rụng tay gì chứ 

23 tháng 5 2018

A B C O D E

a) Xét tam giác ABE và tam giác ACD có :

AB = AC ( tam giác Abc cân tại A )

AE = AD

Chung  \(\widehat{BAC}\)

\(\Rightarrow\) tam giác ABE = tam giác ACD ( c-g-c )

\(\Rightarrow\hept{\begin{cases}BE=CD\left(đpcm\right)\\\widehat{ABE}=\widehat{ACD}\end{cases}}\)

Mà  \(\widehat{ABE}+\widehat{OBC}=\widehat{ACD}+\widehat{OCB}\)

\(\Rightarrow\widehat{OBC}=\widehat{OCB}\)

\(\Rightarrow\) tam giác COB cân tại O \(\Rightarrow OB=OC\left(đpcm\right)\)

c) Xét tam giác AOB và tam giác AOC có :

AB = AC

BO = CO

Chung AO

\(\Rightarrow\) tam giác AOB = tam giác AOC ( c-c-c )

\(\Rightarrow\widehat{BAO}=\widehat{CAO}\)

\(\Rightarrow\) OC là tia phân giác  \(\widehat{BAC}\)(1)

Mà tam giác ABC cân tại A (2)

Từ (1) và (2) \(\Rightarrow\)AO là trung trực BC

23 tháng 5 2018

C/M là gì.Cậu viết tắt tớ khong làm được đâu

a: AD=8/2=4cm

DC=2cm

b: CB=CD
=>C là trung điểm của BD