Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình như trên
+)Ta có: ( g-c-g) ( Vì cùng bằng )
Nên MD = NE.
+)Xét và :
( Hai góc đối đỉnh)
Nên ( cgv - gn)
+)Từ B và C kẻ các đường thẳng lần lượt vuông
Góc với AB và AC cắt nhau tại J.
Ta có:
Nên J thuộc AL đường trung trực ứng với BC
Mặt khác : Từ ( Câu a)
Ta có : BM = CN
BJ = CJ ( cm trên)
Nên ( c-g-c)
hay đường trung trực của MN
Luôn đi qua điểm J cố định.
a) Có góc DBH = góc AHB ( cùng = 90 º do cùng vuông góc BC ) mà 2 góc này ở vị trí so le trong nên BD song song AH.
Lại có BD = AH ( gt ) nên AHBD là hbh , vậy AB song song DH ( theo tính chất hbh )
b) Xét tam giác ABH có góc BAH = 35 º ( gt ) , góc AHB = 90 º do AH vuông góc BC.
Vậy góc ABC = 180º-90º-35º = 55º .
Do đó góc ACB = 180º - góc ABC - góc BAC
= 180º-90º-55º = 35º
Xét tam giác BKE có: KG và BA là các đường cao => ED cũng là đường cao => ED vuông góc với BK.
Vì tam giác ABC vuông cân, AD = AE => DE //BC và góc ABC = 45 độ
=> BC vuông gocsvowis BK (vì DE vuông góc BK, BC // DE)
=> góc CBK = 90 độ => góc ABK = góc CBA - góc CBA = 90 - 45= 45.
Tam giác BKC có BA vừa là đường cao, vừa là phân giác => BKC cân => AC = AK (đpcm)
∆MKI có JM là đường cao (l ⊥ d), đường thẳng KN cũng là đường cao ( giả thiết KN ⊥ MI). Hai đường cao cắt nhau tại N nên N là trực tâm ∆MKI. Vậy NI ⊥ MK