K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2018

Từ E kẻ ED // AC ( D thuộc cạnh AB )

Ta có : 

\(\widehat{DBE}=\widehat{HFC}\)\(\widehat{DEB}=\widehat{HCF}\)\(\widehat{DAE}=\widehat{GEA}\)\(\widehat{EDA}=\widehat{AGE}\)

Và ta chứng minh được \(\Delta BDE=\Delta FHC\left(g-c-g\right)\)

\(\Rightarrow\)\(BD=FH\)( 1 )

\(\Delta DAE=\Delta GEA\left(g-c-g\right)\)

\(\Rightarrow\)\(AD=EG\)( 2 )

Từ ( 1 ) ; ( 2 ) suy ra BD + AD = FH + EG  hay EG + FH = AB ( Vi D thuộc cạnh AB )