K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2023

Xét Δ ADM và Δ BNC ta có :

Góc A = Góc B = 90o (ABCD là HCN)

AD=BC (ABCD là HCN)

AM=BN (đề bài)

⇒ Δ ADM và Δ BNC (cạnh, góc, cạnh)

⇒ Góc ADM = Góc BCN

mà Góc ADM + Góc MDC =90o

      Góc BCN + Góc NCD =90o

⇒ Góc MDC = Góc NCD

mà MN song song CD (AB song song CD)

⇒ MNCD là hình thang cân

26 tháng 6 2023

(a) Cho \(AD\cap BC=\left\{O\right\}.\) Do \(AB\left|\right|CD\left(gt\right)\Rightarrow\hat{OAB}=\hat{ODC}=\hat{OCD}=\hat{OBA}\) (đồng vị và tính chất hình thang cân) \(\Rightarrow\Delta OAB\) cân tại \(O\Rightarrow OA=OB.\)

Mà: \(AM=BN\Rightarrow OA+AM=OB+BN\Leftrightarrow OM=ON\Rightarrow\Delta OMN\) cân tại \(O\Rightarrow\hat{OMN}=\hat{ONM}=\dfrac{180^o-\hat{O}}{2}\left(1\right)\).

Lại có \(\Delta OAB\) cân tại \(O\left(cmt\right)\Rightarrow\hat{OAB}=\hat{OBA}=\dfrac{180^o-\hat{O}}{2}\left(2\right)\)

Từ (1) và (2), suy ra: \(\hat{OMN}=\hat{OAB}\Rightarrow AB\left|\right|MN\).

Mà: \(AB\left|\right|CD\left(gt\right)\Rightarrow AB\left|\right|MN\left|\right|CD\left(3\right)\)

Từ (1) và (3) \(\Rightarrow ABNM\) là hình thang cân (đpcm).

Mặt khác: \(\hat{MDC}=\hat{NCD}\left(gt\right)\left(4\right)\)

Từ (3) và (4) \(\Rightarrow MNCD\) là hình thang cân (đpcm).

26 tháng 6 2023

Đừng để ý mấy cái đường chéo nhé, dư đấy :))

Bài 1:Cho hình thang cân ABCD (Ab song song với CD)có AB=Ad và BD=DC.Tính các góc của hình thang này.Bài 2:Cho tam giác ABC đều.Vẽ đường vuông góc với BC tại C cắt AB tại E.Vẽ đường vuông góc với AB tại A cắt BC tại F.Chứng minh rằng ACFE là hình thang cân.Bài 3:Cho tam giác ABC cân tại A ,M là điểm bất kì nằm giữa A và B.Trên tia đối của CA lấy điểm N sao cho CN=BM.Vẽ ME và NF lần lượt vuông góc...
Đọc tiếp

Bài 1:Cho hình thang cân ABCD (Ab song song với CD)có AB=Ad và BD=DC.Tính các góc của hình thang này.

Bài 2:Cho tam giác ABC đều.Vẽ đường vuông góc với BC tại C cắt AB tại E.Vẽ đường vuông góc với AB tại A cắt BC tại F.Chứng minh rằng ACFE là hình thang cân.

Bài 3:Cho tam giác ABC cân tại A ,M là điểm bất kì nằm giữa A và B.Trên tia đối của CA lấy điểm N sao cho CN=BM.Vẽ ME và NF lần lượt vuông góc với đường thẳng BC.Gọi I là giao điểm của MN và BC.

a)Chứng minh : IE=IF

b)Trên cạnh AC lấy điểm D sao cho CD=CN.Chứng minh rằng BMDC là hình thang cân.

Bài 4:Cho tam giác ABC cân ở A ;M là trung điểm của BC.Trên tia AM lấy điểm N;BN cắt AC ở D,CN cắt AB ở E.Chứng minh BEDC là hình thang cân

Bài 5:Cho hình thang cân ABCD (AB song song với CD) ; góc D=60 độ,AD=AB

a)Chứng minh :DB là phân giác góc ADC

b)Chứng minh : DB vuông góc với BC

0

a: ABCD là hình chữ nhật

=>\(AC^2=AB^2+AD^2\)

=>\(AC^2=256+81=337\)

=>\(AC=\sqrt{337}\left(cm\right)\)

b: Sửa đề: MA=NB

Xét ΔMAD vuông tại A và ΔNBC vuông tại B có

MA=NB

AD=BC

Do đó: ΔMAD=ΔNBC

=>\(\widehat{MDA}=\widehat{NCB}\)

\(\widehat{ADM}+\widehat{MDC}=90^0\)

\(\widehat{NCB}+\widehat{NCD}=90^0\)

mà \(\widehat{MDA}=\widehat{NCB}\)

nên \(\widehat{MDC}=\widehat{NCD}\)

Xét tứ giác MNCD có MN//CD và \(\widehat{MDC}=\widehat{NCD}\)

nên MNCD là hình thang cân

4 tháng 11 2023

Không có mô tả.cảm ơn bạn và cho mik hỏi là làm thế này có đc ko

23 tháng 8 2019

a) Ta có AD = BC; AD // BC (gt), AM = CN (gt)

⇒ AD – AM = BC – CN

Hay DM = BN

Lại có DM // BN

Do đó MNDN là hình bình hành ⇒ BM // DN

22 tháng 12 2017

câu A ko vẽ hình dc