K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2023

a: AM+MB=AB

BN+NC=BC

CP+PD=CD

DQ+QA=DA

mà AB=BC=CD=DA và AM=BN=CP=DQ

nên MB=NC=PD=QA

Xét ΔMAQ vuông tại A và ΔPCN vuông tại C có

MA=PC

AQ=CN

Do đó: ΔMAQ=ΔPCN

=>MQ=PN

Xét ΔNBM vuông tại B và ΔQDP vuông tại D có

NB=QD

BM=DP

Do đó: ΔNBM=ΔQDP

=>NM=QP

Xét ΔMAQ vuông tại M và ΔNBM vuông tại B có

MA=NB

AQ=BM

Do đó: ΔMAQ=ΔNBM

=>\(\widehat{AMQ}=\widehat{BNM}\)

=>\(\widehat{AMQ}+\widehat{BMN}=90^0\)

\(\widehat{AMQ}+\widehat{QMN}+\widehat{NMB}=180^0\)

=>\(\widehat{QMN}+90^0=180^0\)

=>\(\widehat{QMN}=90^0\)

Xét tứ giác MNPQ có

MN=PQ

MQ=NP

Do đó: MNPQ là hình bình hành

mà \(\widehat{QMN}=90^0\)

nên MNPQ là hình chữ nhật

=>M,N,P,Q cùng thuộc 1 đường tròn

b: Xét ΔABQ vuông tại A có

\(tanABQ=\dfrac{AQ}{AB}\)

=>\(\dfrac{AQ}{a}=tan30=\dfrac{\sqrt{3}}{3}\)

=>\(AQ=\dfrac{a\sqrt{3}}{3}\)

ΔAQB vuông tại A

=>\(BQ^2=AB^2+AQ^2\)

=>\(BQ^2=a^2+\left(\dfrac{a\sqrt{3}}{3}\right)^2=\dfrac{4}{3}a^2\)

=>\(BQ=\dfrac{2a}{\sqrt{3}}\)

11 tháng 11 2018

@ Trần Ngọc Huyền @  Em lần sau nhớ chia bài ra đăng nhiều lần nhé! . 

29 tháng 11 2019

Đồng ý với cô Nguyễn Thị Linh Chi

Đăng nhiều thế mới nhìn đã choáng

21 tháng 11 2016

A B C D M N H I

Kẽ NI // BC

\(\Rightarrow\frac{DN}{DC}=\frac{AI}{AB}=\frac{AM}{AH}\)

\(\Rightarrow\)MI // BH

\(\Rightarrow\widehat{IMB}=\widehat{MBH}\left(1\right)\)

Tứ giác IBCN có

\(\widehat{IBC}=\widehat{BIN}=\widehat{BCN}\)

\(\Rightarrow\)Tứ giác IBCN là hình chữ nhật

\(\Rightarrow\widehat{NBC}=\widehat{BCI}\left(2\right)\)

Xét tứ giác IMCB có

\(\widehat{IMC}=90\)(vì IM // BH và BH vuông góc AC)\

\(\widehat{IBC}=90\)

\(\Rightarrow\)Tứ giác IMCB là tứ giác nội tiếp đường tròn

\(\Rightarrow\widehat{IMB}=\widehat{ICB}\left(3\right)\)(cùng chắn cung IB) 

Từ (1),(2),(3) \(\Rightarrow\widehat{MBH}=\widehat{NBC}\)

\(\Rightarrow\widehat{BMC}=90-\widehat{MBH}=90-\widehat{NBC}=\widehat{CNB}\)

\(\Rightarrow\)Tứ giác MBCN nội tiếp đường tròn 

Hay M,B,C,N cùng nằm trên một đường tròn

23 tháng 9 2020

giải thích kĩ hơn đi boy :))

28 tháng 5 2021

Do I là trực tâm của tam giác KAB nên K, I, H thẳng hàng.

Tứ giác AMIH nội tiếp nên \(\widehat{MHI}=\widehat{MAI}\).

Tương tự, \(\widehat{NHI}=\widehat{NBI}\).

Lại có \(\widehat{MAI}=\widehat{NBI}=90^o-\widehat{AKB}\) nên \(\widehat{MHI}=\widehat{NHI}\).

Vậy HK là phân giác của góc MHN.