K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2020

B M C N A D P Q H E F

a, Ta có: \(\widehat{MAN}=\widehat{DBC}=45^0\Rightarrow AQMB\) nội tiếp. \(\left(1\right)\)

b,  Từ \(\left(1\right)\Rightarrow\widehat{MQA}+\widehat{MBA}=180^0\Rightarrow\widehat{AQM}=90^0\left(\widehat{ABC}=90^0\right)\)

\(\Rightarrow MQ\perp AN\)

Tương tự như trên ta có: \(NP\perp AM\Rightarrow H\) là trực tâm của \(\Delta AMN\)

\(\Rightarrow AH\perp MN\left(đpcm\right)\)

c, Gọi \(AH\)\(∩\) \(MN=E\)

Gọi \(AF\perp AM,F\in CD\Rightarrow\widehat{FAD}=\widehat{BAM}\left(+\widehat{MAD}=90^0\right)\)

Lại có: \(\widehat{ADF}=\widehat{ABM}=90^0,AD=AB\Rightarrow\Delta ADF=\Delta ABM\left(g-c-g\right)\)

\(\Rightarrow AF=AM\)

Lại có: \(\widehat{NAF}=\widehat{MAN}=45^0\Rightarrow\Delta FAN=\Delta MAN\left(c-g-c\right)\)

\(\Rightarrow MN=FN\Rightarrow MN+NC+CM=NF+NC+CM=DN+CN+DF+CM\)

\(=\left(DN+CN\right)+\left(BM+CM\right)=CD+CB=2AD\)

Lại có tiếp: \(\hept{\begin{cases}AE\perp MN\\AD\perp NF\end{cases}}\Rightarrow AE=AD\)

\(\Rightarrow S_{ANM}=\frac{1}{2}.AE.MN=\frac{1}{2}.AD.MN\)

Lại có tiếp: \(MN\le MC+NC\)

\(\Rightarrow2MN\le MN+MC+NC=2AD\)

\(\Rightarrow MN\le AD\)

\(\Rightarrow S_{ANM}=\frac{1}{2}.AD.MN\le\frac{1}{2}AD^2\)

Dấu " = " xảy ra \(\Leftrightarrow\orbr{\begin{cases}M\equiv B\\M\equiv C\end{cases}}\)

(Rối thực sự -.- )

26 tháng 5 2020

thực sự đấy, rối lắm

BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp BÀI 3 :Cho hai đoạn...
Đọc tiếp

BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp 

BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp 

BÀI 3 :Cho hai đoạn thẳng MN và PQ cắt nhau tại O .Biết OM.ON= PO.OQ.Chứng minh tứ giác MNPQ nội tiếp 

BÀI 4: Cho tam giác ABC có đường cao AH . Gọi M, N lần lượt là hình chiếu vuông góc của H lên các cạnh AB, AC 
a) c/m AMHN nội tiếp
b) BMNC nội tiếp 

BÀI 5: Cho tam giác ABC các đường phân giác trong là BE và CF cắt nhau tại M và các đường phân giác ngoài của các góc B và góc C cắt nhau tại N .chứng minh BMCN nội tiếp

BÀI 6: Cho đường tròn (O) đường kính AB .Gọi M là một điểm trên tiếp tuyến xBy , đường thẳng AM cắt đường tròn (O) tại C , lấy D thuộc BM, nối AD cắt (O) tại I. c/m CIDM nội tiếp

BÀI 7: Cho đường tròn tâm (O) có cung EH và S là điểm chính giữa cung đó .Trên dây EH lấy hai điểm A và B .Các đường thẳng SA và SB cắt đường tròn lần lượt tại D và C .c/m ABCD là tứ giác nội tiếp

BÀI 8: Cho đường tròn (O) đường kính AB , từ A và B vẽ Ax vuông góc AB và By vuông góc BA (Ax và By cùng phía so với bờ AB ) .Vẽ tiếp tuyến x'My' (tiếp điểm M) cắt Ax tại C và By tại D ; OC cắt AM tại I và OD cắt BM tại K .Chứng minh CIKD nội tiếp

0
13 tháng 4 2016

d, tam giác AND đồng dạng với tam giác MAB (gg)=>AM/MB=AN/AD

=>AM.AD=AN.MB => AM^2.AD^2=AN^2.MB^2 

Cộng 2 vế với AN^2.AD^2 =>AM^2.AD^2 + AN^2.AD^2 = AN^2.MB^2 + AN^2.AD^2

=>AD^2.(AM^2+AN^2)=AN^2(MB^2+AB^2)

=>AD^2(AM^2+AN^2)=AN^2.AM^2 (vì MB^2+AB^2=AM^2 theo định lý pytago)

=>1/AD^2=(AN^2+AM^2)/AM^2.AN^2

=>1/AD^2=1/AM^2+1/AN^2