Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(1/51 +1/52+ 1/53 +1/54+ 1/55 +1/56+ 1/57 +1/58 + 1/59 +1/60)(1/51 +1/52+ 1/53 +1/54+ 1/55 +1/56+ 1/57 +1/58 + 1/59 +1/60)(1/51 +1/52+ 1/53 +1/54+ 1/55 +1/56+ 1/57 +1/58 + 1/59 +1/60)(1/51 +1/52+ 1/53 +1/54+ 1/55 +1/56+ 1/57 +1/58 + 1/59 +1/60)(1/51 +1/52+ 1/53 +1/54+ 1/55 +1/56+ 1/57 +1/58 + 1/59 +1/60)(1/51 +1/52+ 1/53 +1/54+ 1/55 +1/56+ 1/57 +1/58 + 1/59 +1/60)(1/51 +1/52+ 1/53 +1/54+ 1/55 +1/56+ 1/57 +1/58 + 1/59 +1/60)(1/51 +1/52+ 1/53 +1/54+ 1/55 +1/56+ 1/57 +1/58 + 1/59 +1/60)(1/51 +1/52+ 1/53 +1/54+ 1/55 +1/56+ 1/57 +1/58 + 1/59 +1/60)(1/51 +1/52+ 1/53 +1/54+ 1/55 +1/56+ 1/57 +1/58 + 1/59 +1/60)(1/51 +1/52+ 1/53 +1/54+ 1/55 +1/56+ 1/57 +1/58 + 1/59 +1/60)
E = 1/31+1/32+...+1/60
E > 1/40+1/40+...+1/40+1/41+1/42+...+1/60
E > 20/40+1/41+1/42+...+1/60
E > 1/2+1/60+1/60+...+1/60
E > 1/2 + 1/3 = 5/6
Mà 5/6 > 4/5
=> E > 4/5
- \(S=\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}\)
\(S=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+..+\frac{1}{50}\right)+\left(\frac{1}{51}+..+\frac{1}{60}\right)\)
\(\Rightarrow S>\left(\frac{1}{40}+\frac{1}{40}+..+\frac{1}{40}\right)+\left(\frac{1}{50}+\frac{1}{50}+..+\frac{1}{50}\right)+\left(\frac{1}{60}+\frac{1}{60}+..+\frac{1}{60}\right)\)
\(\Rightarrow S>10\cdot\frac{1}{40}+10\cdot\frac{1}{50}+10\cdot\frac{1}{60}=\frac{37}{60}>\frac{36}{60}=\frac{3}{5}\left(1\right)\)
- \(S=\frac{1}{31}+\frac{1}{32}+..+\frac{1}{60}\)
\(S=\left(\frac{1}{31}+\frac{1}{32}+..+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+..+\frac{1}{60}\right)\)
\(S< \left(\frac{1}{31}+\frac{1}{31}+..+\frac{1}{31}\right)+\left(\frac{1}{41}+\frac{1}{41}+..+\frac{1}{41}\right)+\left(\frac{1}{51}+\frac{1}{51}+..+\frac{1}{51}\right)\)
\(S< 10\cdot\frac{1}{31}+10\cdot\frac{1}{41}+10\cdot\frac{1}{51}=\frac{10}{31}+\frac{10}{41}+\frac{10}{51}< \frac{10}{30}+\frac{10}{40}+\frac{10}{50}\)
\(S< \frac{1}{3}+\frac{1}{4}+\frac{1}{5}=\frac{47}{60}< \frac{48}{60}=\frac{4}{5}\left(2\right)\)
Từ (1) và (2) => đpcm
Cho E = 1/31+1/32+1/33+...+1/60
So sánh E với 4/5
Các bác nào làm được thì giúp em với mai em thi rùi.
E = (1/31 +1/32+ 1/33 +1/34+ 1/35 +1/36+ 1/37 +1/38 + 1/39 +1/40) +
( 1/41 +1/42+ 1/43 +1/44+ 1/45 +1/46+ 1/47 +1/48 + 1/49 +1/50)+
(1/51 +1/52+ 1/53 +1/54+ 1/55 +1/56+ 1/57 +1/58 + 1/59 +1/60)
Mà (1/31 +1/32+ 1/33 +1/34+ 1/35 +1/36+ 1/37 +1/38 + 1/39 +1/40) < ( 1/31 . 10) = 1/ 3 ( 10 số hạng)
Tương tự :( 1/41 +1/42+ 1/43 +1/44+ 1/45 +1/46+ 1/47 +1/48 + 1/49 +1/50)<1/4 và
(1/51 +1/52+ 1/53 +1/54+ 1/55 +1/56+ 1/57 +1/58 + 1/59 +1/60)< 1/5
(1/3 + 1/4 + 1/5 ) < 4/5 ( dpcm)
Ưu ái lắm nha!
S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)
Mà : (1/31+1/32+1/33+...+1/40) > 1/40 x 10 = 1/4 (gồm 10 số hạng)
Tương tự : (1/41 + 1/42 + ...+ 1/50) > 1/5 ; (1/51 + 1/52+...+1/59+1/60) > 1/6
S > 1/4 + 1/5 + 1/6.
Trong khi đó (1/4 + 1/5 + 1/6) > 3/5
=>S > 3/5 (1)
S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)
Mà : (1/31+1/32+1/33+...+1/40) < 1/31 x 10 = 10/30 = 1/3 (gồm 10 số hạng)
=> S < 4/5 (2)
Từ (1) và (2) => 3/5 <S<4/5
S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)
Mà : (1/31+1/32+1/33+...+1/40) > 1/40 x 10 = 1/4 (gồm 10 số hạng)
Tương tự : (1/41 + 1/42 + ...+ 1/50) > 1/5 ; (1/51 + 1/52+...+1/59+1/60) > 1/6
S > 1/4 + 1/5 + 1/6.
Trong khi đó (1/4 + 1/5 + 1/6) > 3/5
=>S > 3/5 (1)
S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)
Mà : (1/31+1/32+1/33+...+1/40) < 1/31 x 10 = 10/30 = 1/3 (gồm 10 số hạng)
=> S < 4/5 (2)
Từ (1) và (2) => 3/5 <S<4/5 Chúc bạn học tốt !
S=(1/31+1/32+...+1/40)+(1/41+...+1/50)+(1/51+...+1/60)
=>S>1/40*10+1/50*10+1/60*10=3/5
S=(1/31+1/32+...+1/40)+(1/41+...+1/50)+(1/51+...+1/60)
=>S<1/30*10+1/40*10+1/50*10=4/5
=>3/5<S<4/5
S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)
Mà : (1/31+1/32+1/33+...+1/40) > 1/40 x 10 = 1/4 (gồm 10 số hạng)
Tương tự : (1/41 + 1/42 + ...+ 1/50) > 1/5 ; (1/51 + 1/52+...+1/59+1/60) > 1/6
S > 1/4 + 1/5 + 1/6.
Trong khi đó (1/4 + 1/5 + 1/6) > 3/5
=>S > 3/5 (1)
S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)
Mà : (1/31+1/32+1/33+...+1/40) < 1/31 x 10 = 10/30 = 1/3 (gồm 10 số hạng)
=> S < 4/5 (2)
Từ (1) và (2) => 3/5 <S<4/5
so sanh 2 vế nha
vế 1 chứng minh S>3/5
ta có:S=1/31+1/32+.......+1/60>10.1/40+10.1/50+10.1/60=1/4+1/5+1/6=37/60>3/5
vậy S>3/5
vế 2 chứng minh S<4/5
ta có:S=1/31+1/32+.....+1/60<10.1/30+10.1/40+10.1/50=1/3+1/4+1/5=47/60<4/5
vậy S<4/5