Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo:
Vì 302; 150; 826 đều chia hết cho 2 nên A chia hết cho 2. Mà A > 2 nên A có nhiều hơn hai ưóc. Vậy A là hợp số.
B là hợp số vì B chia hết cho 5; B > 5.
C là hợp số vì C chia hết cho 13; C > 13.
D là hợp số vì D chia hết cho 3; D >3.
p nguyen to >3 => p khong chia het cho 3 => p co dang 3k+1 va 3k+2
TH1 : p=3k+1=> p2+2012 = (3k+1)2+2012=9.k2+6k+1+2012=9k2+6k+2013 chia hết cho 3 =>là hợp số
TH2 : BAN TU THƯ TRƯỜNG HỢP p=3k+2 nhé
CÒN KẾT QUẢ THÌ NÓ LÀ HỢP SỐ
ban dua p ve dang 3k+1 va 3k+2 roi tinh p^2+2012 va thay no deu chia het cho 3 .Tu do p^2+2013 la hop so
Vì p là số nguyên tố lớn hơn 3 nên p có dạng 3k+1 hoặc 3k+2 .
+ Nếu p= 3k+1 (k>0):
p2+14=(3k+1)2+14=9k2+6k+1+14=9k2+6k+15 chia hết cho 3.
=>p2+14 là hợp số.
+ Nếu p= 3k+2 (k>0):
p2+14=(3k+2)2+14=9k2+12k+4+14=9k2+12k+18 chia hết cho 3.
=>p2+15 là hợp số.
Ta cho 1 VD để chứng minh :
\(3.3.3.3.3.3.3.3.3.3=59049\)
Mà : \(59049-1=59048⋮2;4;...\)
=> P10-1 là hợp số
Vì N nguyên tố và N > 3 \(\Rightarrow n=3k+1;3k+2\)
Xét n = 3k+1
\(n^2=\left(3k+1\right)^2=9k^2+6k+1\)
\(n^2+2006=9k^2+6k+2007=3\left(3k^2+2k+669\right)\)là hợp số
Xét n = 3k+2
\(n^2=\left(3k+2\right)^2=9k^2+12k+4\)
\(n^2+2006=9k^2+12k+2010=3\left(3k^2+4k+670\right)\)là hợp số
Ta có : \(A=3.15.45-2.10\)
\(=2025-20\)
\(=2005\)
=> A là hợp số
Phần giải thích bạn tự làm nha
hợp số nha bn