K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2018

Vì p là số nguyên tố lớn hơn 3 nên p có dạng 3k+1 hoặc 3k+2 .

+ Nếu p= 3k+1 (k>0):

p2+14=(3k+1)2+14=9k2+6k+1+14=9k2+6k+15 chia hết cho 3.

=>p2+14 là hợp số.

+ Nếu p= 3k+2 (k>0):

p2+14=(3k+2)2+14=9k2+12k+4+14=9k2+12k+18 chia hết cho 3.

=>p2+15 là hợp số.

20 tháng 4 2017

số hợp số

20 tháng 4 2017

Ta cho 1 VD để chứng minh :

 \(3.3.3.3.3.3.3.3.3.3=59049\)

Mà : \(59049-1=59048⋮2;4;...\)

=> P10-1 là hợp số

Ta có : \(A=3.15.45-2.10\)

\(=2025-20\)

\(=2005\)

=> A là hợp số 

Phần giải thích bạn tự làm nha

8 tháng 8 2016

hợp số nha bn

24 tháng 7 2018

Vì N nguyên tố và N > 3 \(\Rightarrow n=3k+1;3k+2\)

Xét n = 3k+1 

\(n^2=\left(3k+1\right)^2=9k^2+6k+1\)

\(n^2+2006=9k^2+6k+2007=3\left(3k^2+2k+669\right)\)là hợp số

Xét n = 3k+2

\(n^2=\left(3k+2\right)^2=9k^2+12k+4\)

\(n^2+2006=9k^2+12k+2010=3\left(3k^2+4k+670\right)\)là hợp số

15 tháng 11 2018

hợp số

27 tháng 2 2016

p nguyen to >3 => p khong chia het cho 3 => p co dang 3k+1 va 3k+2

TH1 : p=3k+1=> p2+2012 = (3k+1)2+2012=9.k2+6k+1+2012=9k2+6k+2013 chia hết cho 3 =>là hợp số

TH2 : BAN TU THƯ TRƯỜNG HỢP p=3k+2 nhé

CÒN KẾT QUẢ THÌ NÓ LÀ HỢP SỐ

19 tháng 3 2016

ban dua p ve dang 3k+1 va 3k+2 roi tinh p^2+2012 va thay no deu chia het cho 3 .Tu do p^2+2013 la hop so

26 tháng 3 2019

p10 - 1 là SNT

do p10 là hợp số

26 tháng 3 2019

Vì p là sô nguyên tố => p>=2 => P^5+1 >=33>1

                                                    p^5-1>= 31>1

Xét  P^10-1=(p^5)^2-1^2=(P^5-1)(p^5+1) chia hết cho P^5-1 và P^5 +1 khác 1 

=> P^10-1 là hợp số

18 tháng 8 2017

Là hợp số vì nếu p là số nguyên tố hay hợp số thì nếu \(p^2\)thì cũng đều là hợp số cả, vì nó chia hết cho 1; p và \(p^2\)

Vì thế \(p^2+2003\)là hợp số.

Vì p là số nguyên tố lớn hơn 3 

\(\Rightarrow\)p là lẻ

\(\Rightarrow\)p2 là lẻ

\(\Rightarrow\)p2 + 2003 là chẵn

mà p > 3 \(\Rightarrow\)p2 > 3 \(\Rightarrow\)p2 + 2003 > 3

\(\Rightarrow\)p2 + 2003 là hợp số