K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 12 2022

\(x^4+2x^2-3=0\Leftrightarrow x^4+3x^2-x^2-3=0\)

\(\Leftrightarrow x^2\left(x+3\right)-\left(x^2+3\right)=0\)

\(\Leftrightarrow\left(x^2+3\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=-3\left(vn\right)\\x^2=1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)

\(\Rightarrow-1+1=0\)

Chọn C

20 tháng 1 2023

Áp dụng hệ thức vi ét:

\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=-m\\x_1.x_2=m-1\end{matrix}\right.\)

⇒ \(\left(x_1+x_2\right)^2-2x_1.x_2=m^2-2\left(m-1\right)\)

\(\Leftrightarrow x_1^2+x_2^2=\left(m-1\right)^2\)

\(Min\left(x_1^2+x_2^2=0\right)\Leftrightarrow m=1\)

Chọn A

NV
22 tháng 12 2022

Thay \(x=-1\) vào ta được:

\(\left(-1\right)^2-\left(3m+1\right)\left(-1\right)+m-5=0\)

\(\Leftrightarrow4m-3=0\Rightarrow m=\dfrac{3}{4}\)

Chọn B

23 tháng 4 2022

\(a.\Leftrightarrow mx^2+2mx-x+m+2=0\)

\(\Leftrightarrow mx\left(x+2\right)+\left(m+2\right)-x=0\)

\(\Leftrightarrow\left(m+2\right)\left(mx+1\right)-x=0\)

\(\Rightarrow\left\{{}\begin{matrix}m=\left(0+x\right):\left(mx+1\right)-2\\m=[\left(0+x\right):\left(m+2\right)-1]:x\end{matrix}\right.\)

29 tháng 3 2018

a) Ta có:Δ =(-7)2 -4.2.2 =49 -16 =33 >0

Phương trình có 2 nghiệm phân biệt .Theo hệ thức Vi-ét, ta có:

x1 + x2 =-b/a =7/2 ;x1x2 =c/a =2/2 =1

b) c = -16 suy ra ac < 0

Phương trình có 2 ghiệm phân biệt .Theo hệ thức Vi-ét, ta có:

x1 + x2 =-b/a =-2/5 ;x1x2 =c/a =-16/5

c) Ta có: Δ’ = 22 – (2 -√3 )(2 + √2 ) =4 -4 - 2√2 +2√3 +√6

= 2√3 - 2√2 +√6 >0

Phương trình 2 ghiệm phân biệt .Theo hệ thức Vi-ét, ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

d) Ta có : Δ = (-3)2 -4.1,4.1,2 =9 – 6,72 =2,28 >0

Phương trình có 2 ghiệm phân biệt .Theo hệ thức Vi-ét, ta có:

x1 + x2 = -b/a = 3/(1.4) = 30/14 = 15/7 ; x1x2 = c/a = (1.2)/(1.4) = 12/14 = 6/7

Ta có: Δ = 12 -4.5.2 = 1 - 40 = -39 < 0

Theo đề, ta có:

-2(-3)^2+(m-1)*(-3)+m=0

=>-3m+3+m-2*9=0

=>-2m-15=0

=>m=-15/2

PT khi đó sẽ là -2x^2+(-17/2)x-15/2=0

=>2x^2+17/2x+15/2=0

=>x=-5/4

Tổng các nghiệm là -5/4-3=-17/4

8 tháng 6 2023

a) Để phương trình có 2 nghiệm phân biệt 

<=> \(\Delta=\left[-\left(4m+3\right)^2\right]-4.2.\left(2m-1\right)=16m^2+24m+9-16m+8=16m^2+8m+1+16=\left(4m+1\right)^2+16>0\)

với mọi giá trị của m. 

Vậy phương trình luôn có 2 nghiệm phân biệt với mọi giá trị của m.

b) Vì phương trình luôn có 2 nghiệm phân biệt với mọi giá trị của m nên ta có: x1+x2\(\dfrac{4m+3}{2}\)và x1.x2=\(\dfrac{2m-1}{2}\)

3 tháng 5 2023

Đặt \(x^2=t\) \(\left(t\ge0\right)\)

\(\Rightarrow t^2-2t-3=0\\ \Leftrightarrow\Delta=\left(-2\right)^2-4.1.\left(-3\right)=16\\ \Rightarrow\left\{{}\begin{matrix}t_1=\dfrac{2+\sqrt{16}}{2.1}=3\\t_2=\dfrac{2-\sqrt{16}}{2}=-1\end{matrix}\right.\)

\(\Rightarrow t=3\) vì \(t\ge0\)

\(\Rightarrow x^2=3\\ \Rightarrow\begin{matrix}x=\sqrt{3}\\x=-\sqrt{3}\end{matrix}\)

3 tháng 5 2023

Đặt t = x² (t ≥ 0)

Phương trình tương đương:

t² - 2t - 3 = 0

Ta có: a - b + c = 1 - (-2) - 3 = 0

Phương trình có hai nghiệm:

t₁ = -1 (loại)

t₂ = 3 (nhận)

Với t₂ = 3

⇔ x² = 3

⇔ x = √3; x = -√3

Vậy S = {-√3; √3}