Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Do BD là tia phân giác của ABC (gt)
⇒ ∠ABD = ∠CBD = 90⁰ : 2 = 45⁰
Do MN // AB (gt)
AB ⊥ BC (gt)
⇒ MN ⊥ BC
⇒ ∠INB = 90⁰
⇒ ∆INB vuông tại N
⇒ ∠BIN = 90⁰ - ∠IBN
= 90⁰ - ∠CBD
= 90⁰ - 45⁰
= 45⁰
⇒ ∠MID = ∠BIN = 45⁰ (đối đỉnh)
b) MN ⊥ BC (đã chứng minh ở câu a)
a: Xet ΔABC có AD/AB=AE/AC
nên DE//CB
b: DE//BC
AH vuông góc BC
=>AH vuông góc DE
ΔADE cân tại A
mà AH là đường cao
nên AH là trung trực của DE
c: ΔCBA đều
mà BF là trung tuyến
nên BF vuông góc AC
M = |4x-5| + |7+4x} = |5-4x| + |7+4x| ≥ |5-4x + 7+4x| = |12| = 12
minM = 12, đạt khi (5-4x)(7+4x) ≥ 0 <=> -7/4 ≤ x ≤ 5/4
~ ~ ~ ~ ~ ~ ~ ~
1) N = (2x-8)/5x = 2/5 - 8/5x
thấy N > 2/5 nếu x < 0 và N < 2/5 nếu x > 0, do đó để tìm min chỉ cần xét x > 0
x ≥ 1 => 5x ≥ 5 => 1/5x ≤ 1/5 => -8/5x ≥ -8/5 => N = 2/5 - 8/5x ≥ 2/5 - 8/5 = -6/5
minN = -6/5 ; đạt khi x = 1
2a) (4x+1)²+3 ≥ 3 => 1/[(4x+1)²+3] ≤ 1/3 => E = 7/[(4x+1)²+3] ≤ 7/3
maxE = 7/3 đạt khi x = -1/4
2b) |x-4|+7 ≥ 7 => 1/(|x-4|+7) ≤ 1/7 => E = 2/(|x-4|+7) ≤ 2/7
maxE = 2/7, đạt khi x = 4
3a) ghi nhầm đề:
[x] + {y} = 1,5 = 1 + 0,5 => [x] = 1 và {y} = 0,5
{x} + [y] = 3,2 = 0,2 + 3 => {x} = 0,2 và [y] = 3
vậy x = [x]+{x} = 1,2 ; y = [y]+{y} = 3,5
3b) [x] + {y} = 4,7 = 4 + 0,7 => [x] = 4 và {y} = 0,7
x+y = [x] + {x} + [y] + {y} = 3,2 , thay ở trên vào
=> 4 + {x} + [y] + 0,7 = 3,2 => {x} + [y] = -1,5 = 0,5 - 2
=> {x} = 0,5 và [y] = -2
vậy: x = 4,5 và y = -1,7
~~~~~~~~~~~~~~~~~