Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đề sai thì phải
\(A=\frac{10}{2\cdot12}+\frac{2}{3\cdot5}+\frac{3}{5\cdot8}+\frac{1}{2\cdot3}+\frac{5}{12\cdot17}+\frac{6}{17\cdot23}+\frac{7}{23\cdot30}\)
\(A=\frac{1}{2}-\frac{1}{12}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{2}-\frac{1}{3}+\frac{1}{12}-\frac{1}{17}+\frac{1}{17}-\frac{1}{23}+\frac{1}{23}-\frac{1}{30}\)
\(A=\frac{1}{2}+\frac{1}{2}-\frac{1}{8}-\frac{1}{30}\)
\(A=\frac{101}{120}\)
\(A=\frac{1}{2.12}+\frac{2}{3.5}+\frac{3}{5.8}+...+\frac{7}{23.30}\)
\(=\frac{1}{2}-\frac{1}{12}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...-\frac{1}{23}+\frac{1}{23}-\frac{1}{30}\)
\(=\frac{1}{2}+\frac{1}{2}-\frac{1}{8}-\frac{1}{30}=1-\frac{19}{120}=\frac{101}{120}\)
bạn phải cho ra 2 số cuối thì mới làm đc nha có 1 s
ố cuối ko làm đc đâu
A= 1-1/2 + 1-1/3 + 1/2-1/5 + 1/3-1/8+ 1/5-1/13+1/8- 1/21 +....+ 1/610- 1/1597
A= 1/610
\(B=\frac{7}{3.13}+\frac{7}{13.23}+...+\frac{7}{53.63}\)
\(B=10.\left(\frac{1}{3.13}+\frac{1}{13.23}+....+\frac{1}{53.63}\right)\)
\(B=10.\left(\frac{1}{3}-\frac{1}{13}+\frac{1}{13}-\frac{1}{23}+...+\frac{1}{53}+\frac{1}{63}\right)\)
\(B=10.\left(\frac{1}{3}-\frac{1}{63}\right)\)
\(B=10.\frac{20}{63}\)
\(B=\frac{200}{63}\)
1, Tính tổng:
\(C=\frac{5}{7}\cdot\frac{5}{11}+\frac{5}{7}\cdot\frac{2}{11}-\frac{5}{7}\cdot\frac{14}{11}\)
\(=\frac{5}{7}\cdot\left(\frac{5}{11}+\frac{2}{11}-\frac{14}{11}\right)=\frac{5}{7}\cdot\frac{-7}{11}=\frac{-5}{11}\)
2, Tìm x:
\(x+\frac{5}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}+...+\frac{4}{41\cdot45}=\frac{-37}{45}\)
\(\Rightarrow x+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+...+\frac{1}{41}-\frac{1}{45}=\frac{-37}{45}\)
\(\Rightarrow x+\frac{1}{5}-\frac{1}{45}=\frac{-37}{45}\Rightarrow x+\frac{9}{45}-\frac{1}{45}=\frac{-37}{45}\)
\(\Rightarrow x+\frac{8}{45}=\frac{-37}{45}\Rightarrow x=\frac{-37}{45}-\frac{8}{45}=\frac{-45}{45}=-1\)
- Các bài tìm x còn lại bạn cứ theo trình tự thực hiện phép tính mà làm nhé!
\(C=\frac{5}{7}\cdot\frac{5}{11}+\frac{5}{7}\cdot\frac{2}{11}-\frac{5}{7}\cdot\frac{14}{11}\)
\(=\frac{5}{7}\cdot\left(\frac{5}{11}+\frac{2}{11}-\frac{14}{11}\right)\)
\(=\frac{5}{7}\cdot-\frac{7}{11}\)
\(=-\frac{5}{11}\)
\(=\frac{3}{3.13}+\frac{3}{13.23}+...+\frac{3}{1993.2003}\)
\(=\frac{1}{10}.\left(1-\frac{3}{13}+\frac{3}{13}-\frac{3}{23}+...+\frac{3}{1993}-\frac{3}{2003}\right)\)
\(=\frac{1}{10}.\left(1-\frac{3}{2003}\right)\)
\(=\frac{1}{10}.\frac{2000}{2003}\)
\(=\frac{200}{2003}\)
Đặt \(A=\frac{1}{13}+\frac{3}{13.23}+\frac{3}{23.33}+...+\frac{3}{1993.2003}\)
\(\Rightarrow A=\frac{3}{3.13}+\frac{3}{13.23}+\frac{3}{23.33}+...+\frac{3}{1993.2003}\)
\(\Rightarrow A=3\left(\frac{1}{3.13}+\frac{1}{13.23}+\frac{1}{23.33}+...+\frac{1}{1993.2003}\right)\)
\(\Rightarrow A=\frac{3}{10}\left(\frac{10}{3.13}+\frac{10}{13.23}+\frac{10}{23.33}+...+\frac{10}{1993.2003}\right)\)
\(\Rightarrow A=\frac{3}{10}\left(\frac{1}{3}-\frac{1}{13}+\frac{1}{13}-\frac{1}{23}+\frac{1}{23}-\frac{1}{33}+...+\frac{1}{1993}-\frac{1}{2003}\right)\)
\(\Rightarrow A=\frac{3}{10}\left(\frac{1}{3}-\frac{1}{2003}\right)\)
\(\Rightarrow A=\frac{3}{10}.\left(\frac{2003}{6009}-\frac{3}{6009}\right)\)
\(\Rightarrow A=\frac{3}{10}.\frac{2000}{6009}\)
\(\Rightarrow A=\frac{200}{2003}\)
\(x+\frac{3}{5.9}+\frac{3}{9.13}+\frac{3}{13.17}+...+\frac{4}{41.45}=-\frac{37}{45}\)
\(\Leftrightarrow x+3\left(\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+...+\frac{1}{41.45}\right)=-\frac{37}{45}\)
\(\Leftrightarrow x+\frac{3}{4}\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+...+\frac{1}{41}-\frac{1}{45}\right)=-\frac{37}{45}\)
\(\Leftrightarrow x+\frac{3}{4}\left(\frac{1}{5}-\frac{1}{45}\right)=-\frac{37}{45}\)
\(\Leftrightarrow x+\frac{3}{4}.\frac{8}{45}=-\frac{37}{45}\)
\(\Leftrightarrow x+\frac{2}{15}=-\frac{37}{45}\)
\(\Leftrightarrow x=-\frac{43}{45}\)
phần a dễ bạn tự làm đi tử thì bạn tính như bình thường còn mẫu thì:7.(\(\frac{1}{3.13}\)+\(\frac{1}{13.23}\)+\(\frac{1}{23.33}\))
\(\frac{7}{10}\).(\(\frac{1}{3}\)-\(\frac{1}{33}\))=\(\frac{7}{33}\)
b)(1+1/3+1/5+..+1/199)-(1/2+1/4+...+1/200)
(1+1/2+1/3+...+1/199+1/200)-(1/2+1/2+1/4+1/4+...+1/200+1/200)
=1+1/2+1/3+...+1/199+1/200-(1+1/2+1/3+...+1/100)
=1/101+1/102+...+1/200
\(\overline{?}\)