K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2021

undefined

2 tháng 7 2019

\(A=5x\left(4x^2-2x+1\right)-2x\left(10x^2-5x-2\right)\)

\(=20x^3-10x^2+5x-20x^3+10x^2+4x\)

\(=9x\)

Thay x=15 \(\Rightarrow A=9.15=135\)

4 tháng 7 2019

\(B=6xy\left(xy-y^2\right)-8x^2\left(x-y^2\right)+5y^2\left(x^2-xy\right)\)

\(=6x^2y^2-6xy^3-8x^3+8x^2y^2+5x^2y^2-5xy^3\)

\(=19x^2y^2-11xy^3-8x^3\)

Thay x=1/2 ; y=2 vào B \(\Rightarrow19.\left(\frac{1}{2}\right)^2.2^2-11\cdot\frac{1}{2}\cdot2^3-8\cdot\left(\frac{1}{2}\right)^3\)

\(=19-44-1\)

\(=-26\)

27 tháng 9 2017

\(\left(x+1\right)\left(y+1\right)=8\\ \Rightarrow xy+x+y+1=8\\ \Rightarrow xy+x+y=7\)

\(x\left(x+1\right)+y\left(y+1\right)+xy=17\\ \Rightarrow x^2+y^2+x+y+xy=17\\ \Rightarrow x^2+y^2=10\)

6 tháng 4 2017

2x^2=(x+y)(2-xy)

2x^2=(x+y)(x^2+y^2-xy)

2x^2=x^3+y^3

2=x^2+y^2 

suy ra (x^3+y^3)-(x^2+y^2)=2x^2-2

x^3+y^3-x^2-y^2=2(x^2-1)

x^2(x-1)+y^2(y-1)=2(x-1)(x+1)

x^2(x-1)+y^2(y-1)=(x-1)(2x+2)

x^2(x-1)-(x-1)(2x+2)+y^2(y-1)=0

(x-1)(x^2-2x-2)+y^2(y-1)=0

Xét TH1 1<=x<=căn bậc 2

từ x^2+y^2=2 suy ra 0<=y<=1 

y<=1 suy ra y-1<=0 => y^2(y-1)<=0 (1)

x>=1 => x-1>=0 

1<=x<= căn bậc 2 => -3<=x^2-2x-2<=-2 căn bậc 2

=> (x-1)(x^2-2x-2)<=0 (2)

từ (1) và (2) =>(x-1)(x^2-2x-2)+y^2(y-1)=0 khi và chỉ khi x=y=1

Xét TH2 1<=y<= căn bậc 2 

từ x^2+y^2=2 suy ra 0<=x<=1 

y>=1 =>y-1>=0 =>y^2(y-1)>=0(3)

x<=1 => x-1<=0 

0<=x<=1 => -2<=x^2-2x-2<=-3

suy ra (x-1)(x^2-2x-2)>=0(4)

từ (3) và (4) => (x-1)(x^2-2x-2)+y^2(y-1)=0 khi và chỉ khi x=y=1  

vậy cặp số (x,y) duy nhất thỏa mãn đề bài là (1,1) 

7 tháng 4 2017

\(\hept{\begin{cases}x^2+y^2=2\\2x^2=\left(x+y\right)\left(2-xy\right)\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x^2+y^2=2\\2x^2=\left(x+y\right)\left(x^2+y^2-xy\right)\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=\sqrt{2-x^2}\\2x^2=x^3+y^3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=\sqrt{2-x^2}\left(1\right)\\2x^2-x^3=\sqrt{\left(2-x^3\right)}\left(2\right)\end{cases}}\)

\(\left(2\right)\Leftrightarrow\left(2x^2-x^3\right)^2=\left(2-x^2\right)^3\)

\(\Leftrightarrow2x^6-4x^5-2x^4+12x^2-8=0\)

\(\Leftrightarrow2\left(x-1\right)\left(x^5-x^4-2x^3-2x^2+4x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x^5-x^4-2x^3-2x^2+4x+4=0\end{cases}}\)

Làm tiếp nhé