Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi x(m) là chiều dài( dk: x>=0;y>=6)
720/x (m) là chiều rộng
nếu tăng chiều dài 10m thì chiều dài mới là x+10
nếu giảm chiều rộng 6m thì chiều rộng mới là 720/x-6
vì khi thay đôi cd, cr diện tích vẫn giữ nguyên nên ta có pt
(x+10)(720/x-6)=720
<=> 720+7200/x -60-6x=720
<=> 6x2 +60x-7200=0
giải pt ta được x1=30 (TMĐK)
x2=-40 (TMĐK)
vậy chiều dài là 30m
chiều rộng là 720/30=24m
Gọi chiều dài của hcn là x>0 (cm), chiều rộng hcn là y> 0(cm)
Do chiều dài gấp 3 chiều rộng nên ta có pt: \(x=3y\) (1)
Khi tăng chiều dài và chiều rộng thêm 5cm thì chiều dài và chiều rộng tương ứng là: \(x+5\) và \(y+5\) (cm)
Do diện tích khi tăng kích thước là 153 cm2 nên ta có pt:
\(\left(x+5\right)\left(y+5\right)=153\) (2)
Từ (1) và (2) ta có hệ:
\(\left\{{}\begin{matrix}x=3y\\\left(x+5\right)\left(y+5\right)=153\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3y\\\left(3y+5\right)\left(y+5\right)=153\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3y\\3y^2+20y-128=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3y\\\left[{}\begin{matrix}y=4\\y=-\dfrac{32}{3}< 0\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=12\\y=4\end{matrix}\right.\)
Vậy hcn ban đầu dài 12 rộng 4 cm
Gọi chiều dài là a (cm), chiều rộng là b (cm)
(ĐK: a;b > 0)
Chiều dài gấp 3 lần chiều rộng \(\Rightarrow a=3b\)
Diện tích mới sau khi tăng chiều dài và chiều rộng 5cm là 153cm2 \(\Rightarrow\left(a+5\right)\left(b+5\right)=153\)
Ta lập hệ phương trình:
\(\left\{{}\begin{matrix}a=3b\\\left(a+5\right)\left(b+5\right)=153\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=3b\\\left(3b+5\right)\left(b+5\right)=153\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=3b\\3b^2+15b+5b+25=153\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=3b\\3b^2+20b-128=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=3b\\\left(b-4\right)\left(3b+32\right)=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=3b\\\left[{}\begin{matrix}b=4\left(tmđk\right)\\b=\dfrac{-32}{3}\left(ktmđk\right)\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=3.4=12\left(tmđk\right)\\b=4\end{matrix}\right.\)
Vậy chiều dài hình chữ nhật là 12cm, chiều rộng hình chữ nhật là 4cm
Diện tích của hình chữ nhật là:
10.8,1=81(m^2)
Vì điện tích của hình vuông bằng diện tích hình chữ nhật nên điện tích hình vuông là 81(m^2)
Suy ra cạnh của hình vuông đó là 9(m)
Diện tích hình vuông = Diện tích HCN= 8,1 x 10= 81(m2)
Ta gọi cạnh hình vuông có độ dài a(m) với a>0
=> a2=81
<=>a=9(m)
=> Cạnh hình vuông: 9(m)
Chọn đáp án A.
Diện tích của hình chữ nhật là 9.4 = 36 ( m 2 )
Diện tích của mảnh đất hình vuông là 36 ( m 2 ) nên cạnh hình vuông là 36 = 6 (m) (vì độ dài cạnh luôn dương)
Gọi chiều dài chiều rộng ban đầu của hình chữ nhật là: x;y (m)
ĐK : x>5; y > 0 , x >y
Chiều dài của hình chữ nhật khi giảm đi 5m là : x - 5 (m)
Chiều rộng tăng 2m nên ta có chiều rộng lúc sau là : y + 2 (m)
Vì nếu tăng chiều rộng 2m và giảm chiều dài 5m thì thu được 1 hình vuông nên ta có :
x - 5 = y + 2
<=> x - y = 7 (1)
Diện tích hình chữ nhật ban đầu là: xy = 120(m²) (2)
Từ (1) và (2) ta có hệ :
x - y = 7 và xy = 120 (thế)
Giải hệ ta được x = 15(TMDK ẩn)
y = 8(TMDK ẩn)
Vậy chiều dài và chiều rộng của hình chữu nhật đó lần lượt là 15m và 8m
Tham khảo
Gọi chiều dài của hình chữ nhật là a(m)
Chiều rộng của hình chữ nhật là b(m) Với 0<b<a<120
Theo đề bài:
Diện tích của hcn là 120m^2 => ab=120m^2 (1)
Tăng chiều rộng giảm chiều dài chứ nhỉ?
Nếu tăng chiều rộng 2m và giảm chiều dài 5m thì được hình vuông =>b+2=a-5
\(\left\{{}\begin{matrix}b+2=a-5\\ab=120\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=a-7\\ab=120\end{matrix}\right.\)
⇒a\(^2\)-7a-120=0
⇒(a−15)(a+8)=0⇒a=15⇒b=8
Gọi chiều dài hcn là x ( x > 0 )
Chiều rộng hcn là y ( y > 0)
Nửa chu vi hcn là: x + y = 200 : 2 = 100 cm
Chiều dài gấp 3 lần chiều rộng => x = 3y => x - 3y = 0
Ta có hệ phương trình
\(\left\{{}\begin{matrix}x-3y=0\\x+y=100\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=75\\y=25\end{matrix}\right.\)
Diện tích hcn là: 75 x 25 = 1875 cm vuông
Gọi chiều dài , chiều rộng của hình chữ nhật lần lượt là a,b ( a,b > 0 ) ( cm )
Theo đề bài ta có :
chiều dài gấp 3 lần chiều rộng hay a = 3b
Ta lại có : 2 ( a + b ) = 200
<=> a + b = 100
Thay a = 3b vào phương trình ta được
3b + b = 100
<=> 4b = 100 <=> b = 25 ( cm )
a = 25 . 3 = 75 ( cm )
Vậy chiều dài hình chữ nhật là 75 cm , chiều rộng là 25 cm
Diện tích là:
\(\left(720+\dfrac{4}{5}\sqrt{5}\right)\cdot\sqrt{5}=720\sqrt{5}+4\left(cm^2\right)\)
=>Độ dài cạnh hình vuông là:
\(\sqrt{720\sqrt{5}+4}\simeq40,17\left(cm\right)\)
Bài 1 : Đổi \(6,4mm=0,0064m\)
Gọi \(a\left(m\right)\) là độ dài của cạnh hình vuông . ĐK : \(a>0\)
Diện tích của hình chữ nhật là : \(S_{HCN}=10.0,0064=0,064m^2\)
\(\Rightarrow S_{HV}=S_{HCN}=0,064m^2\)
\(\Rightarrow a^2=0,064\Rightarrow a=\dfrac{2\sqrt{10}}{25}m\)
Vậy độ dài của cạnh hình vuông là \(\dfrac{2\sqrt{10}}{25}\) mét .
Bài 2 : Gọi hình vuông là ABCD và O là giao điểm của hai đường chéo .
Theo tính chất hình vuông ta có : \(OA=OB=OC=OD\) .
Theo định lý py - ta - go ta có :
\(\sqrt{OA^2+OB^2}=AB\)
\(\Leftrightarrow\sqrt{OA^2+OA^2}=5\)
\(\Leftrightarrow\sqrt{2OA^2}=5\)
\(\Leftrightarrow2OA^2=25\)
\(\Leftrightarrow OA^2=\dfrac{25}{2}\Rightarrow OA=\dfrac{5}{\sqrt{2}}\)
\(\Rightarrow AC=2OA=2.\dfrac{5}{\sqrt{2}}=5\sqrt{2}cm\)
Vậy đọ dài đường chéo của hình vuông là \(5\sqrt{2}cm\)