Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TA CÓ \(\frac{16x^2-5x+3}{4x}=4x-\frac{5}{4}+\frac{3}{4x}\)
Áp dụng BDT cô-si có \(4x-\frac{5}{4}+\frac{3}{4x}\ge-\frac{5}{4}+2\sqrt{4x\times\frac{3}{4x}}=-\frac{5}{4}+2\times3=\frac{19}{4}\)
Dấu bằng xảy ra \(\Leftrightarrow4x=\frac{3}{4x}\Leftrightarrow x=\frac{\sqrt{3}}{4}\)
>_ là lớn hơn hoặc bằng nha do bị lỗi chính tả
_< là bé hơn hoặc bằng
A,
2-5x >_ 3(2-x)
⇔ 2-5x >_ 6-3x
⇔ -5x+3x >_ 6-2
⇔ -2x >_ 3
⇔ x _< \(\dfrac{-3}{2}\)
Tập nghiệm { x / x _< \(\dfrac{-3}{2}\)}
B,
-4x + 3 _< 5x - 7
⇔ -4x - 5x _< -7 - 3
⇔ -9x _< -10
⇔ x >_ \(\dfrac{10}{9}\)
Tập nghiệm { x / x >_ \(\dfrac{10}{9}\) }
1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4
vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)2 nhỏ hơn hoặc bằng 0 với mọi x
vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4
các bài giá trị nhỏ nhất còn lại làm tương tự bạn nhé
chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được
Bài làm:
+Tìm Min:
Ta có: \(\frac{4x+3}{x^2+1}=\frac{\left(x^2+4x+4\right)-\left(x^2+1\right)}{x^2+1}=\frac{\left(x+2\right)^2}{x^2+1}-1\)
Mà \(\hept{\begin{cases}\left(x+2\right)^2\ge0\\x^2+1>0\end{cases}\left(\forall x\right)}\)\(\Rightarrow\frac{\left(x+2\right)^2}{x^2+1}\ge0\)
Dấu "=" xảy ra khi: \(\left(x+2\right)^2=0\Rightarrow x=-2\)
Vậy \(Min=-1\Leftrightarrow x=-2\)
+Tìm Max:
Ta có: \(\frac{4x+3}{x^2+1}=\frac{\left(4x^2+4\right)-\left(4x^2-4x+1\right)}{x^2+1}=4-\frac{\left(2x-1\right)^2}{x^2+1}\)
Mà \(\hept{\begin{cases}\left(2x-1\right)^2\ge0\\x^2+1>0\end{cases}}\left(\forall x\right)\)\(\Rightarrow-\frac{\left(2x-1\right)^2}{x^2+1}\le0\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(2x-1\right)^2=0\Rightarrow x=\frac{1}{2}\)
Vậy \(Max=4\Leftrightarrow x=\frac{1}{2}\)
1 cách làm khác :3
\(A=\frac{4x+3}{x^2+1}\Leftrightarrow Ax^2+A=4x+3\)
\(\Leftrightarrow Ax^2-4x+\left(A-3\right)=0\)
Xét \(\Delta'=4-\left(A-3\right)A=-A^2+3A+4\ge0\)
\(\Leftrightarrow\left(A-4\right)\left(A+1\right)\ge0\Leftrightarrow-1\le A\le4\)
Điểm rơi khó chết luôn á :(
1, \(3x^2-5x+4\)
\(=3\left(x^2-\frac{5}{3}x\right)+1=3\left(x^2-2.\frac{5}{6}x+\frac{25}{36}\right)+\frac{23}{12}=3\left(x-\frac{5}{6}\right)^2+\frac{23}{12}\)
Ta có: \(3\left(x-\frac{5}{6}\right)^2\ge0\forall x\Leftrightarrow3\left(x-\frac{5}{6}\right)^2+\frac{23}{12}\ge\frac{23}{12}\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-\frac{5}{6}\right)^2=0\Leftrightarrow x-\frac{5}{6}=0\Leftrightarrow x=\frac{5}{6}\)
Vậy minA = \(\frac{23}{12}\Leftrightarrow x=\frac{5}{6}\)
2, Bạn thử kiểm tra lại đề bài xem
P=\(\frac{5x^2+4x+3}{x^2+2}\)=\(\frac{\left(x^2+2\right)+4x^2+4x+1}{x^2+2}\)=\(\frac{x^2+2}{x^2+2}\)+\(\frac{4x^2+4x+1}{x^2+2}\)=1+\(\frac{\left(2x+1\right)^2}{x^2+2}\)
Vì (2x+1)2> 0 \(\forall x\)
x2>0=>x2+2>0
=>1+\(\frac{5x^2+4x+3}{x^2+2}\)>1
Dấu = xảy ra khi 2x+1=0
=>x=\(\frac{-1}{2}\)
Vậy giá trị nhỏ nhất của P=1 tại x=\(\frac{-1}{2}\)