Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n^{2}={\underbrace{999\dots 9}_{\text{50 chữ số 9}}}^{2}=\left(10^{50}-1\right)^{2}=10^{100}-2\cdot 10^{50}+1=\left(10^{50}-2\right)\cdot 10^{50}+1=\underbrace{999\dots 9}_{\text{49 chữ số 9}}8\cdot10^{50}+1=\underbrace{999\dots 9}_{\text{49 chữ số 9}}8\underbrace{000\dots 0}_{\text{49 chữ số 0}}1\)
- Vì N là số tự nhiên có hai chữ số nên đặt \(N=\overline{ab}\) \(\left(0< a\le9;0\le b\le9;a,b\in N\right)\)
Ta có \(S\left(N\right)=S\left(\overline{ab}\right)=ab\) ; \(P\left(N\right)=P\left(\overline{ab}\right)=a+b\)
Vì \(N=S\left(N\right)+P\left(N\right)\) nên \(\overline{ab}=ab+a+b\)
\(\Rightarrow10a+b=ab+a+b\)
\(\Rightarrow9a=ab\Rightarrow b=9\) (vì a khác 0)
Vậy chữ số hàng đơn vị của N là 9 ---> chọn E
3. + Tổng các chữ số của A là : \(2016\cdot9\)
+ Ta có : \(A^2-1=\left(A-1\right)\left(A+1\right)\)
\(=999...98\cdot10^{2016}\) ( 2015 cs 9 )
\(=999...98000...0\) ( 2015 cs 9; 2016 cs 0 )
\(\Rightarrow A^2=999...98000...01\) ( 2015 cs 9; 2015 cs 0 )
=> Tổng các chữ số của \(A^2\) là :
\(2015\cdot9+8+1=2016\cdot9\)
=> Tổng các chữ số của A bằng tổng các chứ số của \(A^2\)
P/s: Bn xem lại nhé! Có j sai sót thì cmt cho mk bt
2. + Ta có : \(\left\{{}\begin{matrix}n+18=a^2\\n-41=b^2\end{matrix}\right.\) \(\left(a,b\in N\right)\)
+ \(\left(n+18\right)-\left(n-41\right)=a^2-b^2\)
\(\Rightarrow\left(a-b\right)\left(a+b\right)=59\)
Từ đó xét các TH tìm đc a,b rồi tìm đc x.