Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2n + 6 ⁝ 2n - 1
=> ( 2n - 1 ) + 7 ⁝ 2n - 1
Mà 2n - 1 ⁝ 2n - 1
=> 7 ⁝ 2n - 1
=> 2n - 1 ∈ { 1 ; 7 }
2n - 1 | 1 | 7 |
n | 1 | 4 |
a/
\(\dfrac{2n+9}{n+1}=\dfrac{2\left(n+1\right)+7}{n+1}=2+\dfrac{7}{n+1}\)
\(\Rightarrow n+1=\left\{-7;-1;1;7\right\}\Rightarrow n=\left\{-8;-2;0;6\right\}\)
b/
\(\dfrac{3n+5}{n-1}=\dfrac{3\left(n-1\right)+8}{n-1}=3+\dfrac{8}{n-1}\)
\(\Rightarrow n-1=\left\{-8;-4;-2;-1;1;2;4;8\right\}\)
\(\Rightarrow n=\left\{-7;-3;-1;0;2;5;9\right\}\)
1/
10 chia hết cho n => n \(\in\)Ư(10) = {1;2;5;10}
2/ 12 chia hết cho n - 1 => n - 1 \(\in\)Ư(12) = {1;2;3;4;6;12}
=> n \(\in\){2;3;4;5;7;13}
3/ 20 chia hết cho 2n + 1 => 2n + 1 \(\in\)Ư(20) = {1;2;4;5;10;20}
=> 2n \(\in\){0;1;3;4;9;19}
=> n \(\in\){0;2} ( tại vì đề bài cho số tự nhiên nên chỉ có 2 số đây thỏa mãn)
4 / n \(\in\)B(4) = {0;4;8;12;16;20;24;...}
Mà n < 20 => n \(\in\){0;4;8;12;16}
5. n + 2 là ước của 30 => n + 2 \(\in\)Ư(30) = {1;2;3;5;6;10;15;30}
=> n \(\in\){0;1;3;4;8;13;28} (mình bỏ số âm nên mình không muốn ghi vào )
6. 2n + 3 là ước của 10 => 2n + 3 \(\in\)Ư(10) = {1;2;5;10}
=> 2n \(\in\){2;7} (tương tự mình cx bỏ số âm)
=> n = 1
7. n(n + 1) = 6 = 2.3 => n = 2
a, Ta có : \(\text{n + 5 = (n - 1)+6}\)
Vì \(\text{(n-1) ⋮ n-1}\)
Nên để \(\text{n+5 ⋮ n-1}\)⋮ `n-1`
Thì \(\text{6 ⋮ n-1}\)
\(\Rightarrow\) \(\text{n - 1 ∈ Ư(6)}\)
\(\Rightarrow\) \(\text{n - 1 ∈}\) \(\left\{\text{±1;±2;±3;±6}\right\}\)
\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{0;-1;-2;-5;2;3;4;7}\right\}\) \(\text{( TM )}\)
\(\text{________________________________________________________}\)
b, Ta có : \(\text{2n-4 = (2n+4)- 8 = 2(n+2) - 8}\)
Vì \(\text{2(n+2) ⋮ n+2}\)
Nên để \(\text{2n-4 ⋮ n+2}\)
Thì \(\text{8 ⋮ n+2}\)
\(\Rightarrow\) \(\text{n + 2 ∈ Ư(8)}\)
\(\Rightarrow\) \(\text{n + 2 ∈}\) \(\left\{\text{±1;±2;±4;±8}\right\}\)
\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{-3;-4;-6;-10;-1;0;2;6}\right\}\) ( TM )
\(\text{_________________________________________________________________ }\)
c, Ta có :\(\text{ 6n + 4 = (6n + 3) +1 = 3(2n+1) + 1}\)
Vì \(\text{3(2n+1) ⋮ 2n+1}\)
Nên để\(\text{ 6n+4 ⋮ 2n+1}\)
Thì \(\text{1 ⋮ 2n+1}\)
\(\Rightarrow\) \(\text{2n + 1 ∈ Ư(1)}\)
\(\Rightarrow\) \(\text{2n + 1 ∈}\) \(\left\{\text{±1}\right\}\)
\(\Rightarrow\) \(\text{2n ∈}\) \(\left\{\text{-2;0}\right\}\)
\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{-1;0}\right\}\) ( TM )
\(\text{_______________________________________}\)
Ta có : \(\text{3 - 2n = -( 2n - 3 ) = -( 2n + 2 ) + 5 = -2( n+1)+5}\)
Vì \(\text{-2(n+1) ⋮ n+1}\)
Nên để \(\text{3-2n ⋮ n+1}\)
Thì\(\text{ 5 ⋮ n + 1}\)
\(\Rightarrow\) \(\text{n + 1 ∈}\) \(\left\{\text{±1;±5}\right\}\)
\(\Rightarrow\) \(\text{n ∈}\) \(\text{-2;-6;0;4}\) ( TM )
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
(2n+7)/(n+1)=(2n+2+5)/(n+1)=[2(n+1)+5]/(...
2n+7 chia hêt cho n+1 khi 5/(n+1) là số nguyên
khi n+1 ∈ Ước của 5
khi n+1 ∈ {±1 ;±5} mà n ∈N => n ≥0 => n+1 ≥1
vậy n+1 ∈ {1;5}
Xét TH
n+1=1=>n=0 (tm)
n+1=5>n=4(tm)
Vậy tại n={0;4) thì 2n+7 chia hết cho n+1
....
n+1 thuộc Ư(5)