Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
\(=\sqrt{\left(\sqrt{11}\right)^2-2.\sqrt{11}.\sqrt{3}+\left(\sqrt{3}\right)^2}\)
\(=\sqrt{\left(\sqrt{11}-\sqrt{3}\right)^2}=\sqrt{11}-\sqrt{3}\)
2)
\(=\sqrt{\left(\sqrt{7}\right)^2-2.\sqrt{7}\sqrt{5}+\left(\sqrt{5}\right)^2}=\sqrt{\left(\sqrt{7}-\sqrt{5}\right)^2}=\sqrt{7}-\sqrt{5}\)
3)
\(=\sqrt{\left(\sqrt{11}\right)^2-2.\sqrt{11}\sqrt{5}+\left(\sqrt{5}\right)^2}=\sqrt{\left(\sqrt{11}-\sqrt{5}\right)}=\sqrt{11}-\sqrt{5}\)
4)
\(=\sqrt{3^2-2.3.\sqrt{5}+\left(\sqrt{5}\right)^2}=\sqrt{\left(3-\sqrt{5}\right)^2}=3-\sqrt{5}\)
5)
\(=\sqrt{3^2-2.3.2\sqrt{2}+\left(2\sqrt{2}\right)^2}=\sqrt{\left(3-2\sqrt{2}\right)^2}=3-2\sqrt{2}\)
a: \(=\dfrac{9\left(\sqrt{5}+\sqrt{3}\right)}{\sqrt{5}+\sqrt{3}}=9\)
b: \(=\dfrac{\sqrt{10}\left(\sqrt{11}+\sqrt{7}\right)}{\sqrt{2}\left(\sqrt{11}+\sqrt{7}\right)}=\sqrt{\dfrac{10}{2}}=\sqrt{5}\)
c: \(=\dfrac{\sqrt{6}\left(\sqrt{7}-\sqrt{6}\right)}{\sqrt{3}\left(\sqrt{7}-\sqrt{6}\right)}=\sqrt{\dfrac{6}{3}}=\sqrt{2}\)
1) \(\dfrac{9\sqrt{5}+3\sqrt{27}}{\sqrt{5}+\sqrt{3}}\)
\(=\dfrac{9\sqrt{5}+3\sqrt{9\cdot3}}{\sqrt{5}+\sqrt{3}}\)
\(=\dfrac{9\sqrt{5}+3\cdot3\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)
\(=\dfrac{9\cdot\left(\sqrt{5}+\sqrt{3}\right)}{\sqrt{5}+\sqrt{3}}\)
\(=\dfrac{9}{1}=9\)
2) \(\dfrac{\sqrt{110}+\sqrt{70}}{\sqrt{22}+\sqrt{14}}\)
\(=\dfrac{\sqrt{10}\cdot\sqrt{11}+\sqrt{10}\cdot\sqrt{7}}{\sqrt{2}\cdot\sqrt{11}+\sqrt{2}\cdot\sqrt{7}}\)
\(=\dfrac{\sqrt{10}\cdot\left(\sqrt{11}+\sqrt{7}\right)}{\sqrt{2}\cdot\left(\sqrt{11}+\sqrt{7}\right)}\)
\(=\dfrac{\sqrt{10}}{\sqrt{2}}=\sqrt{\dfrac{10}{2}}\)
\(=\sqrt{5}\)
3) \(\dfrac{\sqrt{42}-6}{\sqrt{21}-\sqrt{18}}\)
\(=\dfrac{\sqrt{6}\cdot\sqrt{7}-\sqrt{6}\cdot\sqrt{6}}{\sqrt{3}\cdot\sqrt{7}-\sqrt{3}\cdot\sqrt{6}}\)
\(=\dfrac{\sqrt{6}\cdot\left(\sqrt{7}-\sqrt{3}\right)}{\sqrt{3}\cdot\left(\sqrt{7}-\sqrt{3}\right)}\)
\(=\dfrac{\sqrt{6}}{\sqrt{3}}=\sqrt{\dfrac{6}{3}}\)
\(=\sqrt{2}\)
\(A=\sqrt{6-2\sqrt{5}}-\sqrt{6+2\sqrt{5}}\)
\(A=\sqrt{\left(\sqrt{5}-1\right)^2}-\sqrt{\left(\sqrt{5}+1\right)^2}\)
\(A=\sqrt{5}-1-\sqrt{5}-1\)
\(A=-2\)
\(B=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)
\(B=\sqrt{\left(\sqrt{5}+2\right)^2}-\sqrt{\left(\sqrt{5}-2\right)^2}\)
\(B=\sqrt{5}+2-\sqrt{5}+2\)
\(B=4\)
Sửa đề :
\(C=\sqrt{14-6\sqrt{5}}-\sqrt{14+6\sqrt{5}}\)
\(C=\sqrt{\left(3-\sqrt{5}\right)^2}-\sqrt{\left(3+\sqrt{5}\right)^2}\)
\(C=3-\sqrt{5}-3-\sqrt{5}\)
\(C=-2\sqrt{5}\)
\(\sqrt{12-6\sqrt{3}}=\sqrt{9-6\sqrt{3}+3}=\sqrt{3^2-2.3.\sqrt{3}+\left(\sqrt{3}\right)^2}=\sqrt{\left(3-\sqrt{3}\right)^2}\)
\(=\left|3-\sqrt{3}\right|=3-\sqrt{3}\)
\(\sqrt{19+8\sqrt{3}}=\sqrt{16+8\sqrt{3}+3}=\sqrt{4^2+2.4.\sqrt{3}+\left(\sqrt{3}\right)^2}=\sqrt{\left(4+\sqrt{3}\right)^2}\)
\(=\left|4+\sqrt{3}\right|=4+\sqrt{3}\)
\(\sqrt{14-6\sqrt{5}}=\sqrt{9-6\sqrt{5}+5}=\sqrt{3^2-2.3.\sqrt{5}+\left(\sqrt{5}\right)^2}=\sqrt{\left(3-\sqrt{5}\right)^2}\)
\(=\left|3-\sqrt{5}\right|=3-\sqrt{5}\)
\(\sqrt{12-6\sqrt{3}}=\sqrt{3^2-2.3.\sqrt{3}+\left(\sqrt{3}\right)^2}=\sqrt{\left(3-\sqrt{3}\right)^2}=\left|3-\sqrt{3}\right|=3-\sqrt{3}\)
\(\sqrt{19+8\sqrt{3}}=\sqrt{4^2+2.4.\sqrt{3}+\left(\sqrt{3}\right)^2}=\sqrt{\left(4+\sqrt{3}\right)^2}=\left|4+\sqrt{3}\right|=4+\sqrt{3}\)
\(\sqrt{14-6\sqrt{5}}=\sqrt{3^2-2.3.\sqrt{5}+\left(\sqrt{5}\right)^2}=\sqrt{\left(3-\sqrt{5}\right)^2}=\left|3-\sqrt{5}\right|=3-\sqrt{5}\)
a)A=\(2\sqrt{3}-8\sqrt{3}+7\sqrt{3}=\sqrt{3}\)
b)B\(=\sqrt{\left(3-\sqrt{5}\right)^2}+\sqrt{\left(2-\sqrt{5}\right)^2}=3-\sqrt{5}+\sqrt{5}-2=1\)
d)\(=\dfrac{\left(5+\sqrt{5}\right)\left(\sqrt{5}-2\right)}{1}+1-\sqrt{5}-\dfrac{11\left(2\sqrt{5}-3\right)}{11}=5\sqrt{5}+5-10-2\sqrt{5}+1-\sqrt{5}-2\sqrt{5}+3=-1\)
xin chào em mới học dưới lớp tám thôi khó quá không biết làm
a)\(\left(\sqrt{21}+7\right)\cdot\sqrt{10-2\sqrt{21}}\)
\(=\left(\sqrt{21}+7\right)\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}\)
\(=\sqrt{7}\left(\sqrt{3}+\sqrt{7}\right)\left(\sqrt{7}-\sqrt{3}\right)\)
\(=\sqrt{7}\left(7-3\right)=4\sqrt{7}\)
b)\(\left(7+\sqrt{14}\right)\sqrt{9-2\sqrt{14}}\)
\(=\left(7+\sqrt{14}\right)\sqrt{\left(\sqrt{7}-\sqrt{2}\right)^2}\)
\(=\sqrt{7}\left(\sqrt{7}+\sqrt{2}\right)\left(\sqrt{7}-\sqrt{2}\right)\)
\(=\sqrt{7}\left(7-2\right)=5\sqrt{7}\)
Ta có : \(\sqrt{54-14\sqrt{5}}-\sqrt{14+6\sqrt{5}}\)
\(=\sqrt{7^2-2.7.\sqrt{5}+\left(\sqrt{5}\right)^2}-\sqrt{3^2+2.3.\sqrt{5}+\left(\sqrt{5}\right)^2}\)
\(=\sqrt{\left(7-\sqrt{5}\right)^2}-\sqrt{\left(3+\sqrt{5}\right)^2}\)
\(=7-\sqrt{5}-\left(3+\sqrt{5}\right)=7-\sqrt{5}-3-\sqrt{5}=4\)
Tui vừa mới giải xong, cảm ơn nhá