Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\frac{3}{8}-\frac{3}{10}+\frac{3}{11}+\frac{3}{12}}{\frac{5}{8}-\frac{5}{10}+\frac{5}{11}+\frac{5}{12}}+\frac{\frac{3}{2}+1+\frac{3}{4}}{\frac{5}{2}+\frac{5}{3}+\frac{5}{4}}\)
\(=\frac{3.\left(\frac{1}{8}-\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\right)}{5.\left(\frac{1}{8}-\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\right)}+\frac{3.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)}{5.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)}\)
\(=\frac{3}{5}+\frac{3}{5}\)
\(=\frac{6}{5}\)
a, Dat A =\(\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-...-\frac{1}{3^{198}}+\frac{1}{3^{199}}\)
\(\Rightarrow\frac{1}{3}A=\frac{1}{3^2}-\frac{1}{3^3}+\frac{1}{3^4}-...-\frac{1}{3^{199}}+\frac{1}{3^{200}}\)
\(\Rightarrow\frac{1}{3}A+A=\left(\frac{1}{3^2}-\frac{1}{3^3}+\frac{1}{3^4}-...-\frac{1}{3^{199}}+\frac{1}{3^{200}}\right)+\left(\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-...-\frac{1}{3^{198}}+\frac{1}{3^{199}}\right)\)
\(\Rightarrow\frac{4}{3}A=\frac{1}{3}+\frac{1}{3^{200}}\)
\(\Rightarrow A=\frac{\frac{1}{3}+\frac{1}{3^{200}}}{\frac{4}{3}}\)
chung minh tuong tu cau b va c
\(=1-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+...+\frac{1}{99^2}-\frac{1}{100^2}=\frac{9999}{10000}\)
\(=1-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+...+\frac{1}{99^2}-\frac{1}{100^2}=\frac{9999}{10000}\)
Bài làm ai trên 11 điểm tích mình thì mình tích lại
Ông tùng hơn tùng số tuổi là :
29 + 32 = 61 (tuổi )
Vậy ông của tùng hơn tùng 61 tuổi
\(\frac{\frac{3}{8}-\frac{3}{10}+\frac{3}{11}+\frac{3}{12}}{\frac{-5}{8}+\frac{5}{10}-\frac{5}{11}-\frac{5}{12}}\)
\(=\frac{3\left(\frac{1}{8}-\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\right)}{\left(-5\right)\left(\frac{1}{8}-\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\right)}\)
\(=-\frac{3}{5}\)
\(\frac{\frac{3}{8}-\frac{3}{10}+\frac{3}{11}+\frac{3}{12}}{\frac{-5}{8}+\frac{5}{10}-\frac{5}{11}-\frac{5}{12}}\)
\(=\frac{3\left(\frac{1}{8}-\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\right)}{\left(\frac{-5}{8}\right)-\left(\frac{-5}{10}\right)+\left(\frac{-5}{11}\right)+\left(\frac{-5}{12}\right)}\)
\(=\frac{3\left(\frac{1}{8}-\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\right)}{\left(-5\right).\left(\frac{1}{8}-\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\right)}\)
\(=\frac{-3}{5}\)
\(\frac{\frac{2}{5}+\frac{2}{7}-\frac{2}{11}}{\frac{3}{5}+\frac{3}{7}-\frac{3}{11}}+\frac{\frac{1}{4}-\frac{1}{5}+\frac{1}{7}}{\frac{3}{4}-\frac{3}{5}+\frac{3}{7}}\)
\(=\frac{2\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{11}\right)}{3\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{11}\right)}+\frac{1\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{7}\right)}{3\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{7}\right)}\)
\(=\frac{2}{3}+\frac{1}{3}\)
\(=1\)
ta có \(\frac{\frac{3}{7}-\frac{3}{11}+\frac{3}{13}}{\frac{5}{7}-\frac{5}{11}+\frac{5}{13}}=\frac{3\left(\frac{1}{7}-\frac{1}{11}+\frac{1}{13}\right)}{5\left(\frac{1}{7}-\frac{1}{11}+\frac{1}{13}\right)}=\frac{3}{5}\)
và \(\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{4}+\frac{5}{8}-\frac{5}{6}}=\frac{2\left(\frac{1}{2.2}-\frac{1}{3.2}+\frac{1}{4.2}\right)}{5\left(\frac{1}{4}+\frac{1}{8}-\frac{1}{6}\right)}=\frac{2\left(\frac{1}{4}+\frac{1}{8}-\frac{1}{6}\right)}{5\left(\frac{1}{4}+\frac{1}{8}-\frac{1}{6}\right)}=\frac{2}{5}\)
Vậy \(\frac{\frac{3}{7}-\frac{3}{11}+\frac{3}{13}}{\frac{5}{7}-\frac{5}{11}+\frac{5}{13}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{4}+\frac{5}{8}-\frac{5}{6}}=\frac{3}{5}+\frac{2}{5}=\frac{5}{5}=1\)
ĐS: 1
\(A=\frac{3}{5}+\frac{3}{5^3}+\frac{3}{5^5}+...+\frac{3}{5^{199}}\)
\(25\text{A}=15+\frac{3}{5}+\frac{3}{5^3}+...+\frac{3}{5^{197}}\)
\(25\text{A}-A=\left(15+\frac{3}{5}+\frac{3}{5^3}+...+\frac{3}{5^{197}}\right)-\left(\frac{3}{5}+\frac{3}{5^3}+\frac{3}{5^5}+...+\frac{3}{5^{199}}\right)\)
\(24A=15-\frac{3}{5^{199}}\)
\(A=\frac{\left(15-\frac{3}{5^{199}}\right)}{24}\)