Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(S=\left(\dfrac{x}{x^2-36}-\dfrac{x-6}{x^2+6x}\right):\dfrac{2x-6}{x^2+6x}+\dfrac{x}{6-x}\)
\(S=\left(\dfrac{x}{\left(x+6\right)\left(x-6\right)}-\dfrac{x-6}{x\left(x+6\right)}\right)\cdot\dfrac{x\left(x+6\right)}{2\left(x-3\right)}-\dfrac{x}{x-6}\)
\(S=\left(\dfrac{x^2-\left(x-6\right)^2}{x\left(x+6\right)\left(x-6\right)}\right)\cdot\dfrac{x\left(x+6\right)}{2\left(x-3\right)}-\dfrac{x}{x-6}\)
\(S=\left(\dfrac{x^2-x^2+12x-36}{x\left(x+6\right)\left(x-6\right)}\right)\cdot\dfrac{x\left(x+6\right)}{2\left(x-3\right)}-\dfrac{x}{x-6}\)
\(S=\dfrac{12\left(x-3\right)}{x\left(x+6\right)\left(x-6\right)}\cdot\dfrac{x\left(x+6\right)}{2\left(x-3\right)}-\dfrac{x}{x-6}\)
\(S=\dfrac{6}{x-6}-\dfrac{x}{x-6}\)
\(S=\dfrac{6-x}{x-6}=-1\)
b) Vì giá trị của biểu thức S không phụ thuộc vào giá trị của biến nên với mọi giá trị của x ta đều có giá trị của S là - 1.
\(A=\left(\dfrac{x}{\left(x-6\right)\left(x+6\right)}-\dfrac{x-6}{x\left(x+6\right)}\right)\cdot\dfrac{x\left(x+6\right)}{2x-6}-\dfrac{x}{x-6}\)
\(=\dfrac{x^2-x^2+12x-36}{x\left(x-6\right)\left(x+6\right)}\cdot\dfrac{x\left(x+6\right)}{2\left(x-3\right)}-\dfrac{x}{x-6}\)
\(=\dfrac{12\left(x-3\right)}{x-6}\cdot\dfrac{1}{2\left(x-3\right)}-\dfrac{x}{x-6}\)
\(=\dfrac{12}{2\left(x-6\right)}-\dfrac{x}{x-6}=\dfrac{6-x}{x-6}=-1\)
b: Đặt \(x^2-6x-2=a\)
Theo đề, ta có: \(a+\dfrac{14}{a+9}=0\)
=>(a+2)(a+7)=0
\(\Leftrightarrow\left(x^2-6x\right)\left(x^2-6x+5\right)=0\)
=>x(x-6)(x-1)(x-5)=0
hay \(x\in\left\{0;1;6;5\right\}\)
c: \(\Leftrightarrow\dfrac{-8x^2}{3\left(2x-1\right)\left(2x+1\right)}=\dfrac{2x}{3\left(2x-1\right)}-\dfrac{8x+1}{4\left(2x+1\right)}\)
\(\Leftrightarrow-32x^2=8x\left(2x+1\right)-3\left(8x+1\right)\left(2x-1\right)\)
\(\Leftrightarrow-32x^2=16x^2+8x-3\left(16x^2-8x+2x-1\right)\)
\(\Leftrightarrow-48x^2=8x-48x^2+18x+3\)
=>26x=-3
hay x=-3/26
a) Ta có: \(\dfrac{x}{x-3}-\dfrac{6}{x}-\dfrac{9}{x^2-3x}\)
\(=\dfrac{x^2}{x\left(x-3\right)}-\dfrac{6\left(x-3\right)}{x\left(x-3\right)}-\dfrac{9}{x\left(x-3\right)}\)
\(=\dfrac{x^2-6x+18-9}{x\left(x-3\right)}\)
\(=\dfrac{\left(x-3\right)^2}{x\left(x-3\right)}=\dfrac{x-3}{x}\)
b) Ta có: \(\dfrac{7}{x}-\dfrac{x}{x+6}+\dfrac{36}{x^2+6x}\)
\(=\dfrac{7\left(x+6\right)-x^2+36}{x\left(x+6\right)}\)
\(=\dfrac{7x+42-x^2+36}{x\left(x+6\right)}\)
\(=\dfrac{-\left(x^2-7x-78\right)}{x\left(x+6\right)}\)
\(=\dfrac{-\left(x^2-13x+6x-78\right)}{x\left(x+6\right)}\)
\(=\dfrac{-\left[x\left(x-13\right)+6\left(x-13\right)\right]}{x\left(x+6\right)}\)
\(=\dfrac{13-x}{x}\)
c) Ta có: \(\dfrac{6}{x-3}-\dfrac{2x-6}{x^2-9}-\dfrac{4}{x+3}\)
\(=\dfrac{6\left(x+3\right)-2x+6-4\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{6x+18-2x+6-4x+12}{\left(x-3\right)\left(x+3\right)}=\dfrac{36}{\left(x-3\right)\left(x+3\right)}\)
a) rút gọn
\(S=\left(\dfrac{x}{x^2-36}-\dfrac{x-6}{x^2+6x}\right):\dfrac{2x-6}{x^2+6x}+\dfrac{x}{6-x}\)
= \(\left(\dfrac{x}{\left(x-6\right)\left(x+6\right)}-\dfrac{x-6}{x\left(x+6\right)}\right):\dfrac{2x-6}{x\left(x+6\right)}+\dfrac{x}{6-x}\)
=\(\left(\dfrac{x^2}{x\left(x-6\right)\left(x+6\right)}-\dfrac{\left(x-6\right)^2}{x\left(x+6\right)\left(x-6\right)}\right):\dfrac{\left(2x-6\right)\left(x-6\right)}{x\left(x+6\right)\left(x-6\right)}+\dfrac{x}{6-x}\)
=\(\dfrac{x^2-\left(x-6\right)^2}{x\left(x-6\right)\left(x+6\right)}:\dfrac{\left(2x-6\right)\left(x-6\right)}{x\left(x+6\right)\left(x-6\right)}+\dfrac{x}{6-x}\)
= \(\dfrac{6\left(2x-6\right)}{x\left(x-6\right)\left(x+6\right)}\cdot\dfrac{x\left(x-6\right)\left(x+6\right)}{\left(2x-6\right)\left(x-6\right)}+\dfrac{x}{6-x}\)
= \(\dfrac{6}{x-6}+\dfrac{-x}{-\left(6-x\right)}\)
= \(\dfrac{6}{x-6}+\dfrac{-x}{x-6}=\dfrac{6-x}{x-6}=-1\)
b)
Tìm x để giá trị của S = -1
Với mọi x khác 6 thì giá trị của S = -1
b)
Vì giá trị của biểu thức đã được xác định nên giá trị của
S = -1 không phụ thuộc vào giá trị của biến x.
\(\frac{x^2+3x+9}{2x+10}.\frac{x+5}{x^3-27}\)
\(=\frac{x^2+3x+9}{2\left(x+5\right)}.\frac{x+5}{\left(x-3\right)\left(x^2+3x+9\right)}\)
\(=\frac{\left(x+5\right)\left(x^2+3x+9\right)}{2\left(x+5\right)\left(x-3\right)\left(x^2+3x+9\right)}\)
\(=\frac{1}{2\left(x-3\right)}\)
\(\left(\frac{6x+1}{x^2-6x}+\frac{6x-1}{x^2+6x}\right)\left(\frac{x^2-36}{x^2+1}\right)\)
\(=\left[\frac{6x+1}{x\left(x-6\right)}+\frac{6x-1}{x\left(x+6\right)}\right]\left[\frac{\left(x-6\right)\left(x+6\right)}{x^2+1}\right]\)
\(=\frac{\left(6x+1\right)\left(x+6\right)+\left(6x-1\right)\left(x-6\right)}{x\left(x-6\right)\left(x+6\right)}.\frac{\left(x-6\right)\left(x+6\right)}{x^2+1}\)
\(=\frac{6x^2+36x+x+6+6x^2-36x-x+6}{x\left(x-6\right)\left(x+6\right)}.\frac{\left(x-6\right)\left(x+6\right)}{x^2+1}\)
\(=\frac{12x^2+12}{x\left(x-6\right)\left(x+6\right)}.\frac{\left(x-6\right)\left(x+6\right)}{x^2+1}\)
\(=\frac{12\left(x^2+1\right).\left(x-6\right)\left(x+6\right)}{x\left(x-6\right)\left(x+6\right)\left(x^2+1\right)}\)
\(=\frac{12}{x}\)
\(=\dfrac{x^3+2x^2+2x^2-72+108-6x}{2x\left(x+6\right)}\\ =\dfrac{x^3+6x^2-2x^2-12x+6x+36}{2x\left(x+6\right)}\\ =\dfrac{\left(x+6\right)\left(x^2-2x+6\right)}{2x\left(x+6\right)}=\dfrac{x^2-2x+6}{2x}\)
\(\dfrac{x^2+2x}{2x+12}+\dfrac{x-6}{x}+\dfrac{108-6x}{2x\left(x+6\right)}\)
\(=\dfrac{x^2+2x}{2\left(x+6\right)}+\dfrac{x-6}{x}+\dfrac{108-6x}{2x\left(x+6\right)}\)
\(=\dfrac{x\left(x^2+2x\right)+2\left(x+6\right)\left(x-6\right)+108-6x}{2x\left(x+6\right)}\)
\(=\dfrac{x^3+2x^2+2\left(x^2-36\right)+108-6x}{2x\left(x+6\right)}\)
\(=\dfrac{x^3+2x^2+2x^2-72+108-6x}{2x\left(x+6\right)}\)
\(=\dfrac{x^3+4x^2+36-6x}{2x\left(x+6\right)}\)
\(=\dfrac{x^3+6x^2-2x^2-12x+6x+36}{2x\left(x+6\right)}\)
\(=\dfrac{\left(x^3+6x^2\right)+\left(-2x^2-12x\right)+\left(6x+36\right)}{2x\left(x+6\right)}\)
\(=\dfrac{x^2\left(x+6\right)-2x\left(x+6\right)+6\left(x+6\right)}{2x\left(x+6\right)}\)
\(=\dfrac{\left(x+6\right)\left(x^2-2x+6\right)}{2x\left(x+6\right)}\)
\(=\dfrac{x^2-2x+6}{2x}\)
a) \(\dfrac{x}{x-3}+\dfrac{9-6x}{x^2-3x}=\dfrac{x^2}{x\left(x-3\right)}+\dfrac{9-6x}{x\left(x-3\right)}=\dfrac{x^2-6x+9}{x\left(x-3\right)}=\dfrac{\left(x-3\right)^2}{x\left(x-3\right)}=\dfrac{x-3}{x}\)
a, \(\dfrac{x^2-49}{x-7}\) + x - 2 = \(\dfrac{\left(x-7\right)\left(x+7\right)}{x-7}\) + x - 2 = x + 7 + x - 2 = 2x + 5
b, \(\left(\dfrac{x}{x^2-36}-\dfrac{x-6}{x^2+6x}\right)\) . \(\dfrac{x^2+6x}{2x-6}\)
= \(\left(\dfrac{x^2}{x\left(x-6\right)\left(x+6\right)}-\dfrac{\left(x-6\right)^2}{x\left(x+6\right)\left(x-6\right)}\right)\) . \(\dfrac{x\left(x+6\right)}{2x-6}\)
= \(\left(\dfrac{x^2-\left(x-6\right)^2}{x\left(x-6\right)\left(x+6\right)}\right)\) . \(\dfrac{x\left(x+6\right)}{2x-6}\)
= \(\left(\dfrac{6\left(2x-6\right)}{x\left(x-6\right)\left(x+6\right)}\right)\) . \(\dfrac{x\left(x+6\right)}{2x-6}\)
= \(\dfrac{6}{x-6}\)
1. = \(\dfrac{\left(x-7\right)\left(x+7\right)}{x-7}\) + x-2
= x+7 +x-2
= 2x-5
2. = (\(\dfrac{x}{\left(x-6\right)\left(x+6\right)}\) - \(\dfrac{x-6}{x\left(x+6\right)}\) ) \(^{\dfrac{x^2+6x}{2x-6}}\)
= ( \(\dfrac{x^2}{x\left(x-6\right)\left(x+6\right)}\) - \(\dfrac{\left(x-6\right)\left(x-6\right)}{x\left(x-6\right)\left(x+6\right)}\) ) \(\dfrac{x^2+6x}{2x-6}\)
= \(\dfrac{x^2-\left(x^2-12x+36\right)}{x\left(x-6\right)\left(x+6\right)}\) . \(\dfrac{x^2+6x}{2x-6}\)
= \(\dfrac{x^2-x^2+12x-36}{x\left(x-6\right)\left(x+6\right)}\) . \(\dfrac{x^2+6x}{2x-6}\)
= \(\dfrac{12x-36}{x\left(x-6\right)\left(x+6\right)}\) . \(\dfrac{x^2+6x}{2x-6}\)
= \(\dfrac{12\left(x-3\right)x\left(x+6\right)}{x\left(x-6\right)\left(x+6\right)2\left(x-3\right)}\)
= \(\dfrac{6}{x-6}\)
Chúc bạn học tốt!