Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4B=1.2.3.4+2.3.4.4+...+(n-1)n(n+1).4
=1.2.3.4-0.1.2.3+2.3.4.5-1.2.3.4+...+(n-1)n(n+1)(n+2)-[(n-2)(n-1)n(n+1)]
=(n-1)n(n+1)(n+2)-0.1.2.3=(n-1)n(n+1)(n+2)
=>B=(n-1)n(n+1)(n+2)/4
k nha
Đặt A = 1 +3 +5 +...+(2n-1)
Số số hạng của A là : [(2n-1)-1]:2 +1 = n
Tổng A = [(2n-1)+1]xn:2=n2
=> n2=169
=>n2=132
=>n=13
Bài 3:
Gọi số đo các góc lần lượt là a,b,c
Theo đề, ta có: a/3=b/5=c/10
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{10}=\dfrac{a+b+c}{3+5+10}=\dfrac{180}{18}=10\)
Do đó: a=30; b=50; c=100
\(S_n=\dfrac{1}{1.2.3.4}+\dfrac{1}{2.3.4.5}+....+\dfrac{1}{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}\)
\(S_n=\dfrac{1}{3}\left(\dfrac{1}{1.2.3}-\dfrac{1}{2.3.4}-\dfrac{1}{3.4.5}+....+\dfrac{1}{n\left(n+1\right)\left(n+2\right)}-\dfrac{1}{n\left(n+2\right)\left(n+3\right)}\right)\)\(S_n=\dfrac{1}{3}\left(\dfrac{1}{2.3.4}-\dfrac{1}{\left(n+1\right)\left(n+2\right)\left(n+3\right)}\right)\)
\(S_n=\dfrac{1}{3}\left(\dfrac{1}{24}-\dfrac{1}{\left(n+1\right)\left(n+2\right)\left(n+3\right)}\right)\)
\(S_n=\dfrac{1}{72}-\dfrac{1}{3\left(n+1\right)\left(n+2\right)\left(n+3\right)}\)
Ta có : B=1.2.3.4+2.3.4.4+....+(n-1)n(n+1).4
= 1.2.3.4 + 2.3.4.(5-1) + 3.4.5.(6-2) + ... + (n-1)n(n+1)[(n+2)-(n-2)]
=1.2.3.4 +2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + .... + (n-1)n(n+1).(n+2) - (n-2).(n-1).n(n+1)
= ( 1.2.3.4 - 1.2.3.4 ) + ( 2.3.4.5 - 2.3.4.5 ) + .... + ( n-1).n.(n+1).(n+2)
= 0 + 0 + 0 + ... + ( n-1).n.(n+1).(n+2)
= ( n-1).n.(n+1).(n+2)
Vậy B = ( n-1).n.(n+1).(n+2)