K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2018

(a+b)3-3ab.(a+b)

\(=\left(a^3+3a^2b+3ab^2+b^3\right)-3a^2b-3ab^2\) \(b^2\)

\(=a^3+b^3+3a^2b-3a^2b+3ab^2-3ab^2\)

\(=a^3+b^3+0+0\)

\(=a^3+b^3\)

26 tháng 5 2018

(a+b)^3 - 3ab (a+b)

= a^3 + 3ab^2 - 3a^2b + 3ab^ + b^3

= a^3 + 6ab^2 + b^3

13 tháng 8 2016

\(M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)

\(=\left(a+b\right)\left(a^2+ab+b^2\right)+3a^3b+3ab^3+6a^2b^2\)

\(=a^2+ab+b^2+3ab\left(a^2+b^2+2ab\right)\)

\(=a^2+ab+b^2+3ab\left(a+b\right)^2\)

\(=a^2+2ab+b^2+2ab\)

\(= \left(a+b\right)^2+2ab=2ab\)

ta co 
M = a³ + b³ + 3ab(a² + b²) + 6a²b²(a + b) 

= (a+b)(a² - ab + b²) + 3ab[(a+b)² - 2ab] + 6a²b²(a +b ) 

= (a+b) [(a +b)² - 3ab] + 3ab[(a+b)² - 2ab] + 6a²b²(a +b ) 

_______thay a + b = 1 __________________: 
M = 1.(1 - 3ab) + 3ab(1 - 2ab) + 6a²b² 

M = 1 - 3ab + 3ab - 6a²b² + 6a² b² = 1

23 tháng 7 2018

2) b)

Do \(a+b+c=9\Rightarrow\left(a+b+c\right)^2=81\) 

\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=81\)

\(\Rightarrow2\left(ab+bc+ac\right)=81-141=-60\)

\(ab+bc+ac=-60:2=-30\)

23 tháng 7 2018

a, B=x^3 + 3xy +y^3 = x^3 +3xy(x+y)+y^3 (vì x+y=1)

                           = (x+y)^3

                           = 1^3 =1

b, (a+b+c)^2 =a^2 +b^2 +c^2 +2ab +2bc +2ac

    9^2 = 141 +2(ab+bc+ac)

    -60 = 2(ab+bc+ac)

    ab+ac+bc=-30

Vậy M=-30

c, N =(x+y)^3 -3(x+y)(x^2+y^2) +2(x^3+y^3)

       = x^3 + 3x^2 .y + 3xy^2 + -3(x^3+xy^2 +x^2 .y+y^3)+ 2x^3 +2y^3

       = x^3 +3x^2 .y + 3xy^2 - 3x^3 -3xy^2 -3x^2 .y -3y^3 +2x^3 +2y^3

       = 0

Vậy N=0 .Chúc bạn học tốt.

       

26 tháng 7 2021

thôi mk tự lm đc rồi:

(a^3- 3ab^2)^2=361

=a^6- 6a^4b^2+ 9a^2 b^4

(b^3-3a^2b)^2=9604

=b^6- 6a^2b^4+9a^4 b^2

    cộng 2 vế->(a^2+b^2)^3= 9604+361= 9965

mn check hộ mk nha

29 tháng 3 2023

\(a^3-3ab^2=-2\)

\(\Rightarrow\left(a^3-3ab^2\right)^2=4\)

\(\Rightarrow a^6-6a^4b^2+9a^2b^4=4\left(1\right)\)

\(b^3-3a^2b=11\)

\(\Rightarrow\left(b^3-3a^2b\right)^2=121\)

\(\Rightarrow b^6-6a^2b^4+9a^4b^2=121\left(2\right)\)

\(\left(1\right)+\left(2\right)\Rightarrow a^6+3a^4b^2+3a^2b^4+b^6=125\)

\(\Rightarrow\left(a^2+b^2\right)^3=125\Rightarrow a^2+b^2=5\)

29 tháng 3 2023

Cảm ơn bạn nhahaha

4 tháng 9 2021

a)\(a^3+b^3+3ab=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab=a^2-ab+b^2+3ab=a^2+2ab+b^2=\left(a+b\right)^2=1^2=1\)

b) \(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3a^2b-3ab^3-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow0=0\)(đúng do \(a+b+c=0\))

Vậy nếu a+b+c=0 thì \(a^3+b^3+c^3=3abc\)