Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(=\left(7+4\sqrt{3}+3\left(7-4\sqrt{3}\right)\right)\left(7+2\sqrt{3}\right)\)
\(=\left(28-8\sqrt{3}\right)\left(7+2\sqrt{3}\right)\)
\(=4\left(7-2\sqrt{3}\right)\left(7+2\sqrt{3}\right)\)
\(=4\left(49-12\right)=...\)
b/ \(=\left(\frac{\sqrt{15}\left(\sqrt{3}-1\right)}{3\left(\sqrt{3}-1\right)}+\frac{2\sqrt{15}}{3}\right).4\sqrt{15}\)
\(=\left(\frac{\sqrt{15}}{3}+\frac{2\sqrt{15}}{3}\right).4\sqrt{15}\)
\(=\sqrt{15}.4\sqrt{15}=4.15=...\)
c/ Bạn coi lại đề
d/ \(\sqrt{23-2\sqrt{112}}+\sqrt{23+2\sqrt{112}}\)
\(=\sqrt{\left(4-\sqrt{7}\right)^2}+\sqrt{\left(4+\sqrt{7}\right)^2}\)
\(=4-\sqrt{7}+4+\sqrt{7}=8\)
\(\frac{1}{\sqrt{25}+\sqrt{24}}+\frac{1}{\sqrt{24}+\sqrt{23}}+...+\frac{1}{\sqrt{2}+\sqrt{1}}=4\)
\(\Leftrightarrow\sqrt{25}-\sqrt{24}+\sqrt{24}-\sqrt{23}+...+\sqrt{2}-\sqrt{1}=4\)
\(\Leftrightarrow\sqrt{25}-\sqrt{1}=4\Leftrightarrow5-1=4\)(đúng)
Vậy \(\frac{1}{\sqrt{25}+\sqrt{24}}+\frac{1}{\sqrt{24}+\sqrt{23}}+...+\frac{1}{\sqrt{2}+\sqrt{1}}=4\)(đpcm)
\(M=\left(2\sqrt{2}\right)\sqrt{2+4\sqrt{3+\sqrt{2}+\sqrt{11-6\sqrt{2}}}}\)
\(=\left(2\sqrt{2}\right)\sqrt{2+4\sqrt{3+\sqrt{2}+\sqrt{2-6\sqrt{2}+9}}}\)
\(=\left(2\sqrt{2}\right)\sqrt{2+4\sqrt{3+\sqrt{2}+\sqrt{\left(3-\sqrt{2}\right)^2}}}\)
\(=\left(2\sqrt{2}\right)\sqrt{2+4\sqrt{3+\sqrt{2}+3-\sqrt{2}}}\)
\(=\left(2\sqrt{2}\right)\sqrt{2+4\sqrt{6}}\)
\(=\sqrt{16+32\sqrt{6}}\)
a/ Đề sai
b/ \(\sqrt{125}-4\sqrt{45}+3\sqrt{2}-\sqrt{80}=5\sqrt{5}-12\sqrt{5}+3\sqrt{2}-4\sqrt{5}\)
\(=-11\sqrt{5}+3\sqrt{2}\)
c/ \(2\sqrt{\frac{27}{4}}-\sqrt{\frac{48}{9}}-\frac{2}{5}\sqrt{\frac{75}{16}}=2.\frac{3\sqrt{3}}{2}-\frac{4\sqrt{3}}{3}-\frac{2}{5}.\frac{5\sqrt{3}}{4}\)
\(=3\sqrt{3}-\frac{4\sqrt{3}}{3}-\frac{\sqrt{3}}{2}=\sqrt{3}\left(3-\frac{4}{3}-\frac{1}{2}\right)=\frac{7\sqrt{3}}{6}\)
d/ \(\left(\sqrt{99}-\sqrt{18}-\sqrt{11}\right)\cdot\sqrt{11}+3\sqrt{22}=33-3\sqrt{22}-11+3\sqrt{22}=22\)
\(\left(\frac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}=\left(\frac{\sqrt{7}\left(\sqrt{2}-1\right)}{1-\sqrt{2}}+\frac{\sqrt{5}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}=\left(\frac{-\sqrt{7}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}+\frac{-\sqrt{5}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}=\left(-\sqrt{7}-\sqrt{5}\right):\frac{1}{\sqrt{7}-\sqrt{5}}=\frac{\sqrt{5}-\sqrt{7}}{\sqrt{7}+\sqrt{5}}=\frac{\left(\sqrt{5}-\sqrt{7}\right)\left(\sqrt{5}+\sqrt{7}\right)}{\left(\sqrt{7}+\sqrt{5}\right)^2}=\frac{2}{12+2\sqrt{35}}\)
\(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}+1}{\sqrt{5}-1}=\frac{\left(\sqrt{5}-\sqrt{3}\right)^2}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}+\frac{\left(\sqrt{5}+\sqrt{3}\right)^2}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+3\right)}-\frac{\sqrt{5}+1}{\sqrt{5}-1}=\frac{8-2\sqrt{15}}{2}+\frac{8+2\sqrt{15}}{2}-\frac{\left(\sqrt{5}+1\right)^2}{4}=8-\frac{6+2\sqrt{5}}{4}=\frac{26-2\sqrt{5}}{4}\)
a) \(\sqrt{7}.\sqrt{55}.\sqrt{35}.\sqrt{11}=\sqrt{7.55.35.11}=\sqrt{7.5.11.5.7.11}=\sqrt{\left(5.7.11\right)^2}\)
\(=5.7.11=385\)
b) \(\frac{\sqrt{144}}{23}:\frac{\sqrt{16}}{23}=\frac{\sqrt{144}}{23}.\frac{23}{\sqrt{16}}=\frac{\sqrt{144}}{\sqrt{16}}=\sqrt{\frac{144}{16}}=\sqrt{9}=3\)
c) \(\frac{\sqrt{5}}{\sqrt{125}}=\sqrt{\frac{5}{125}}=\sqrt{\frac{1}{25}}=\frac{1}{5}\)
d) \(\frac{\sqrt{135}}{\sqrt{15}}=\sqrt{\frac{135}{15}}=\sqrt{9}=3\)
a)\(\sqrt{7}.\sqrt{55}.\sqrt{35}.\sqrt{11}=\left(\sqrt{7}.\sqrt{355}\right).\left(\sqrt{35}.\sqrt{11}\right)=\sqrt{385}.\sqrt{385}=385\)
b) \(\frac{\sqrt{144}}{23}:\frac{\sqrt{16}}{23}=\frac{12}{23}.\frac{23}{4}=3\)
c) \(\frac{\sqrt{5}}{\sqrt{125}}=\sqrt{\frac{5}{125}}=\sqrt{\frac{1}{25}}=\frac{1}{\sqrt{5}}=\frac{\sqrt{5}}{5}\)
d) \(\frac{\sqrt{135}}{\sqrt{15}}=\sqrt{\frac{135}{15}}=\sqrt{9}=3\)