Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2}{3}+\frac{2}{9}+\frac{2}{27}+\frac{2}{81}+\frac{2}{243}+\frac{2}{729}=\frac{728}{729}\)
Nhớ click cho mik nha !!!!!!!!!!!!!!!!!!!!
Đặt A= biểu thức trên
\(A=\frac{2}{3}+\frac{2}{3^2}+\frac{2}{3^3}+...+\frac{2}{3^6}\)
\(3A=3\left(\frac{2}{3}+\frac{2}{3^2}+...+\frac{2}{3^6}\right)\)
\(3A=2+\frac{2}{3}+...+\frac{2}{3^5}\)
\(3A-A=\left(2+\frac{2}{3}+...+\frac{2}{3^5}\right)-\left(\frac{2}{3}+\frac{2}{3^2}+...+\frac{2}{3^6}\right)\)
\(A=\frac{2-\frac{2}{3^6}}{2}\)
\(a)\) \(427-98=329\)
\(b)\) \(2\cdot19\cdot15+3\cdot43\cdot10+62\cdot80\)
\(=\left(2\cdot15\right)\cdot19+\left(3\cdot10\right)\cdot43+62\cdot80\)
\(=30\cdot19+30\cdot43+62\cdot80\)
\(=30\cdot\left(19+43\right)+62\cdot80\)
\(=30\cdot62+62\cdot80\)
\(=62\cdot\left(30+80\right)\)
\(=62\cdot110=6820\)
\(c)\) Đặt \(M=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)
\(=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}+\frac{1}{3^6}\)
\(\Rightarrow3M=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\)
\(\Rightarrow3M-M=\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}+\frac{1}{3^6}\right)\)
\(\Rightarrow2M=1-\frac{1}{3^6}\)
\(\Rightarrow M=\frac{728}{2\cdot729}=\frac{364}{729}\)
Vậy \(M=\frac{364}{729}\)
A = \(\frac{2}{1.2.3}+\frac{2}{2.3.4}+....+\frac{2}{37.38.39}\)
A = \(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+...+\frac{39-37}{37.38.39}\)
A = \(\frac{3}{1.2.3}-\frac{1}{1.2.3}+\frac{4}{2.3.4}-\frac{2}{2.3.4}+....+\frac{39}{37.38.39}-\frac{37}{37.38.39}\)
A = \(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{37.18}-\frac{1}{38.39}\)
A = \(\frac{1}{2}-\frac{1}{38.39}\)
A = \(\frac{370}{741}\)
đặt biểu thức đó là X
ta có :
\(3X=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
\(\Rightarrow3X-X=1-\frac{1}{729}\)
\(\Rightarrow X=\frac{728}{729}.\frac{1}{2}=\frac{364}{729}\)
Ta có nhận xét:
\(\frac{2}{n.\left(n+1\right)\left(n+2\right)}=\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)
Áp dụng công thức trên vào bài tập, ta có:
B=\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{37.38.39}\)
\(\Rightarrow B=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{37.38.39}\right)\)
\(\Rightarrow B=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{37.38}-\frac{1}{38.39}\right)\)
\(\Rightarrow B=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{38.39}\right)\)
\(\Rightarrow B=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{1482}\right)\)
\(\Rightarrow B=\frac{1}{2}.\frac{370}{741}=\frac{185}{741}\)
Vậy \(B=\frac{185}{741}\)
Ta có nhận xét:
\(\frac{2}{n.\left(n+1\right)\left(n+2\right)}=\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)
Áp dụng công thức trên vào bài tập, ta có:
\(\Rightarrow B=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{37.38.39}\right)\)
\(\Rightarrow B=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{37.38}-\frac{1}{38.39}\right)\)
\(\Rightarrow B=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{38.39}\right)\)
\(\Rightarrow B=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{1482}\right)\)
\(\Rightarrow B=\frac{1}{2}.\frac{370}{741}=\frac{185}{741}\)
\(\Rightarrow B=\frac{1}{2}\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{39-37}{37.38.39}\right)\)
\(\Rightarrow B=\frac{1}{2}\left(\frac{3}{1.2.3}-\frac{1}{1.2.3}+\frac{4}{2.3.4}-\frac{2}{2.3.4}+\frac{5}{3.4.5}-\frac{3}{3.4.5}+...+\frac{39}{37.38.39}-\frac{37}{37.38.39}\right)\)
\(\Rightarrow B=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-...+\frac{1}{37.38}-\frac{1}{38.39}\right)\)
\(\Rightarrow B=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{38.29}\right)\)
\(\Rightarrow B=\frac{1}{2}.\frac{370}{741}=\frac{185}{741}\)
\(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{37.38.39}=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}...+\frac{2}{37.38.39}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{37.38}-\frac{1}{38.39}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{38.39}\right)=\frac{185}{741}\)
Câu a
\(S=\frac{3-1}{1x3}+\frac{5-3}{3x5}+\frac{7-5}{5x7}+...+\frac{2019-2017}{2017x2019}.\)
\(S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}=1-\frac{1}{2019}=\frac{2018}{2019}\)
Câu b
\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^6}+\frac{1}{3^7}\)
\(3A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^5}+\frac{1}{3^6}\)
\(2A=3A-A=1-\frac{1}{3^7}\Rightarrow A=\frac{1}{2}-\frac{1}{2.3^7}\)
\(b,\)Đặt \(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{37\cdot38\cdot39}\)
\(B=\frac{2}{1.2.3}+\frac{2}{2.3.4}+....+\frac{2}{37.38\cdot38}\)
\(2B=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{37.38}-\frac{1}{38.39}\)
\(2B=\frac{1}{1.2}-\frac{1}{38.39}\)
\(\Rightarrow B=\frac{\left(\frac{1}{1.2}-\frac{1}{38.39}\right)}{2}=\frac{185}{741}\)
⇒B =
2
1.2
1 −
38.39
1
=
741
( ) 18